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1. Introduction
Flavobacterium psychrophilum (previously known as 
Cytophaga psychrophila and Flexibacter psychrophilus) is 
the causative agent of bacterial coldwater disease in larger 
fish, seen primarily in salmonids. Worldwide, the disease 
in fry is called rainbow trout fry syndrome (RTFS), and 
for 20 years it has caused serious problems in rainbow 
trout (Oncorhynchus mykiss Walbaum) hatcheries (1,2). 
Outbreaks of the disease typically occur in water at 
temperatures below 14 °C.

Methods for prevention of RTFS are limited, and no 
commercial vaccine is yet available. Several measures 
(equipment and egg disinfection, hygiene practice, 
promotion of immunization) can help to reduce the 
problem, but contamination cannot be excluded (3). 
Flavobacterium psychrophilum infection is still treated 
with antibiotics. Different pharmacological agents have 
been evaluated for the prevention and treatment of RTFS 
in trials (4,5).

In recent years, RTFS is considered to be one of the 
most serious bacterial fish diseases, and it has reported 
mortality rates in the range of 10% to 30% and a cumulative 

mortality rate of up to 70% in rainbow trout fries in 
Turkey (6,7). In Turkey, previously, oxytetracycline (OXT) 
and chlortetracycline were the only antimicrobial agents 
licensed for use in aquaculture. Currently, the efficacy 
of OXT has dropped as described in between 55% and 
75% of F. psychrophilum isolated from Turkish fish farms, 
especially in the West Aegean region in Turkey (5,8), and 
oxolinic acid (OXA) and florfenicol (FFC) are licensed 
for treatment of fish disease. Today, FFC is the drug of 
choice. Until now, resistance of F. psychrophilum to FFC 
has scarcely been reported in Turkey. Other antimicrobial 
agents can be requested by a veterinarian obtaining 
authorization for treatment of a certain disease outbreak in 
a specific fish farm. Traditionally, OXT incorporated into 
fish feed has been the drug of choice for treatment of RTFS 
and columnaris disease (9). Progressively, the efficacy 
of OXT has dropped in some countries and alternative 
agents for treating this serious disease have been found. 
Amoxicillin (AMC) gave faster and more consistent 
results, i.e. mortality ceased and the infection did not 
reemerge. For the last decade, fish farms have reported 
that OXT, AMC, and OXA have become less effective in 
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the field, and FFC has become the new agent of choice for 
the treatment of RTFS (10,11).

To the best of our knowledge, there is no information 
available on both in vitro and in vivo evaluation of 
antibacterial activity for the control of RTFS caused by F. 
psychrophilum in rainbow trout fry. Previous investigations 
of antimicrobial resistance in F. psychrophilum only 
dealt with the in vitro aspect (2,9). Various methods and 
different media (broth or agar dilutions) have been used 
to determine antimicrobial susceptibility and classify 
bacterial isolates as resistant or effective (in some cases 
intermediate) (12,13). Many antibiotics are effective in 
vitro. However, the results have not been corrected by in 
vivo testing (14,15) as depending on early intervention 
and the aquatic environment, such as water temperature, 
pH, feed-drug intake amount, use of repeated drugs, or 
fish density (16). In addition, when the distribution of 
aquaculture production is examined by types, trout (inland 
water) has the highest production rate in aquaculture with 
52.6% in Turkey (17). RTFS plays an important role in this 
respect. In the present study, we performed in vitro trials 
to investigate the sensitivity of F. psychrophilum to a wide 
range of enrofloxacin (ENR), doxycycline (DOX), and 
FFC agents using an agar dilution method, with the aim 
of identifying compounds that may be of use in vivo in 
treating RTFS in this fish.

2. Materials and methods
2.1. Samples and bacterial isolation 
Severe acute infections occurred in four rainbow trout 
hatcheries of in the West Aegean region of Turkey. Water 
composition was as follows: temperature = 9.4 ± 1.2 °C; 
dissolved oxygen = 10.1 ± 0.3 mg/L; pH = 6.5 ± 0.2. A total 
of 220 rainbow trout fries (weight 2–3 g, length 2–3.5 cm) 
with doubtful symptoms of F. psychrophilum infection 
such as failure to feed, spiral swimming, dark skin, spinal 
column deformities, and dorsal fin white spots or lysis 
were used as diagnostic samples. The living animals were 
carried in containers containing fresh water, and the dead 
were stored on ice in cold boxes. 

For isolation of bacteria, samples were taken from 
the kidneys, liver, spleen, and brain of all fish and from 
observed pathological lesions in the sick fish fries. 
Cytophaga agar was used for bacterial isolation, and plates 
were incubated aerobically at 15–20 °C for 48–96 h. After 
incubation, the yellow-pigmented colonies were stained 
using the Gram staining technique, and gram-negative 
isolates were observed under light microscope (18). The 
experimental protocol was approved by the Animal Ethics 
Committee of Adnan Menderes University (2013/113).
2.2. Identification of F. psychrophilum
Pure cultures of the isolated bacteria were identified 
based on colony morphology, Gram staining, and some 

biochemical and fermentation tests (Table 1) according 
to the methods of Koneman et al. (18). The API ZYM 
(bioMérieux, Marcy l’Etoile, France) test was performed 
and the strips were incubated at 15–20 °C for 16–20 h. 
The F. psychrophilum NCIMB (National Collection of 
Industrial, Marine, and Food Bacteria) 1947 strain was 
used as the control bacterium.
2.3. Isolation of bacterial DNAs
The bacterial chromosomal DNA used in PCR assays was 
extracted using the Genomic DNA Extraction Kit (MBI 
Fermentas) according to the manufacturer’s instructions. 
Purified DNA was dissolved in 100 µL of distilled water 
and then stored at –20 °C until use.
2.3.1. Primer and PCR amplification conditions
The extracted DNA was amplified using an oligonucleotide 
primer set specific for F. psychrophilum. The sequence of 
the two primers was designed as FLV-1 (5’-CTT AGT 
TGG CAT CAA CAC-3’) and FLV-2 (5’-ACA CTG 
GCA GTC TTG CTA-3’). The controls consisted of a 
polymerase chain reaction (PCR) mixture without DNA 
template (negative control), and with DNA extracted from 
F. psychrophilum NCIMB 1947 (positive control). PCR 
was performed in an Eppendorf Master Cycler (Eppendorf 
AG, Hamburg, Germany) with a thermal cycling capacity 
of 25 samples. PCR conditions were set according to del 
Cerro et al. (19). 

The PCR products were electrophoresed in 2% agarose 
gel (Bio-Rad Laboratories), stained with ethidium bromide, 
viewed with ultraviolet light, and photographed using 
the Vilber Lourmat Gel Documentation System (Vilber 
Lourmat, Germany). Samples were considered positive 
when a 971-bp PCR product specific for F. psychrophilum 
was detected. 

The specificity of the primer set was tested using the 
cell lysates of the F. psychrophilum NCIMB 1947 strain. An 
amplification product of the expected size (971 bp) was 
observed for F. psychrophilum NCIMB 1947. To determine 
the sensitivity of the PCR, a suspension of F. psychrophilum 
NCIMB 1947 containing 6 × 103 CFU/mL was serially 
diluted two-fold to 6 CFU/mL, and then 10 µL of each 
dilution was boiled for 10 min and added directly to the 
PCR mixture. The bacterial concentration was verified 
by plating 20 µL of each dilution onto Cytophaga agar 
containing 1.5% agar.
2.4. Antimicrobial susceptibility testing
The minimal inhibitory concentration (MIC) values were 
obtained using an agar dilution method as suggested by 
the Clinical and Laboratory Standards Institute (20). 
Mueller Hinton broth (Oxoid) was used for testing of F. 
psychrophilum. The density of the culture was adjusted to 
a turbidity equivalent to that of a 0.5 McFarland standard 
(approximately 108 CFU/mL). Doubling dilutions of 
antimicrobial stock solutions were incorporated (10 µL) 
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into the plates, with final concentrations ranging from 
0.0312 to 256 µg/mL, and incubated at 15–20 °C for 48–
96 h. ENR (Fluka, 17849), DOX (as doxycycline hyclate; 
Sigma, D9891), and FFC (Sigma, F1427), which are used in 
aquaculture, were selected in this study. The antimicrobial 
agents were dissolved in distilled water (ENR), methanol 
(DOX), or dimethyl sulfoxide (FFC), and stock solutions 
were used within 1 h of preparation. 

2.5. Definition of MIC resistance
Endpoint determinations were performed after 96 h, 
and the MIC for each strain was determined as the last 
well or last dilution for which absence of growth of the 
microorganism was detected with the unaided eye, as 
well as when compared to the negative control well. The 
MIC50, MIC90 (minimum concentration of antimicrobial 
compound required to inhibit 50% and 90%, respectively), 

Table 1. Phenotypic characteristics and API ZYM profile of F. psychrophilum isolates (n = 26).

Character Reactions Character Reactions

Cell morphology Slender rod Acid from (as aerobic)

Gram 0/26     Glucose 0/26

Motility - Gliding movement 0/26 - 26*/26     Fructose 0/26

Catalase 26/26     Lactose 0/26

Congo red 0/26     Maltose 0/26

Flexirubin pigment 26/26     Mannitol 0/26

Hydrogen sulfide (H2S) 0/26     Saccharose 0/26

Indole 0/26 API ZYM profile

Methyl red (MR) 0/26     Acid phosphatase 12*/26

Nitrate reduction 0/26     Alkaline phosphatase 26/26

Oxidase 26/26     Cystine arylamidase 0/26

Oxidation-fermentation (O/F) 3*/26     Esterase (C4) 0/26

Simmons’ citrate 0/26     Esterase lipase (C8) 26*/26

Urease 0/26     Lipase (C14) 26*/26

Voges Proskauer (VP) 0/26     Leucine arylamidase 26/26

Growth at     N-Acetyl-β-glucosaminidase 0/26

    15 °C   26/26     Naphthol-AS-BI-phosphohydrolase 19*/26

    37 °C 0/26     Trypsin 0/26

Growth in     Valine arylamidase 24*/26

    0% NaCl 26/26     α-Chymotrypsin 15/26

    0.5% NaCl 26/26     α-Galactosidase 12*/26

    1.5% NaCl 26/26     α-Glucosidase 12/26

    3% NaCl 0/26     α-Mannosidase 0/26

Hydrolysis     α-Fucosidase 0/26

    Casein 26/26     β-Galactosidase 0/26

    Gelatin 26/26     β-Glucuronidase 0/26

    Starch 0/26     β-Glucosidase 0/26

*: Weak positives included. 
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and resistance percentage to each drug was then calculated 
in relation to the total number of F. psychrophilum strains 
isolated from fish fries.
2.6. In vivo treatment
The naturally infected fish fries in four different hatcheries 
were randomly divided into four main groups, each 
containing approximately 25,000 fries. These main 
groups were examined as divided into four pools, each 
containing 6250 fries for better feed intake and following 
of antimicrobial efficacy for control of F. psychrophilum: 
Group 1 (control or untreated), Group 2 (10 mg kg bw–1 
day–1 ENR; Baytril 10% oral solution, Bayer, Turkey), Group 
3 (30 mg kg bw–1 day–1 DOX; Hipradoxi-S, Gürtav İlaç, 
Turkey), and Group 4 (10 mg kg bw–1 day–1 FFC; Florocol 
50% Premix, Schering-Plough Animal Health Corp., UK). 
These fries, prior to the start of the study, were transferred 
to the test pools where mean water temperature, dissolved 
oxygen, and pH levels were determined as 9.2 ± 1.4 °C, 
10.4 ± 0.4 mg/L, and 6.6 ± 0.1, respectively. They were fed a 
commercial pelleted fish feed (control group) or medicated 
feed (treatment groups) (Bagci Aqua Feed, Turkey) ad 
libitum (mean total 2% feed) twice a day during the 
treatment period (10 days). Fries of control and treatment 
groups were fasted for 12 h. The medicated feeds (ENR, 
DOX, and FFC) for oral administration were mixed into 
ordinary fish feed by Bagci Aqua Feed, utilizing the double 
coating technique at concentrations of 0.66 g of ENR, 2 
g of DOX, and 0.66 g of FFC per kilogram of feed. The 
deaths were recorded daily and dead fish were examined. 
Compared to the control group, 10 fish from each of the 
treatment groups underwent gross external and internal 
examination and microbiological confirmation of RTFS 
during the treatment period.
2.7. Statistics
Pearson chi-square (χ2) tests were used to compare the 
groups. All analyses were performed using the SPSS 11.5. 
Differences were considered statistically significant if P < 
0.05, P < 0.01, or P < 0.001. 

3. Results
Under laboratory conditions, 26 F. psychrophilum strains 
were identified from 220 fries in outbreaks detected 
in rainbow trout (Oncorhynchus mykiss Walbaum) 
hatcheries. The number of strains obtained according to 
the hatcheries are 6, 7, 8, and 5, respectively. These strains 
were isolated from the kidneys (2.72%, n = 6), liver (1.81%, 
n = 4), spleen (2.27%, n = 5), and brain (1.81%, n = 4) and 
from observed pathological lesions of the caudal peduncle 
(5%, n = 11). The cultural, biochemical, and physiological 
characteristics and API ZYM profile tests were used in the 
identification of F. psychrophilum strains (Table 1). 

Molecular confirmation of the 26 isolates was 
performed using an F. psychrophilum species-specific 

primer set targeting the 16S rRNA genes. The amplification 
of PCR product of the expected size (971 bp) confirmed the 
entity of the isolated bacteria as F. psychrophilum isolates. 
All isolates were confirmed as F. psychrophilum with PCR 
(Figure 1). The PCR test was specific for F. psychrophilum 
strains. The amplification of F. psychrophilum yielded the 
expected 971-bp amplicon. The PCR assay had a detection 
limit of 60–65 cells per milliliter of PCR mixture, assuming 
that the lysate procedure was completed, since no viable 
cells were detected after the boiling treatment. This level 
equals 6 × 101 CFU/mL.

MIC values (µg/mL) for ENR, DOX, and FFC are 
presented in Table 2. The MIC values determined by agar 
dilution method indicated that they were susceptible to 
88% ENR, 62% DOX, and 81% FFC in this study. For these 
antimicrobial agents, the MIC ranges were 0.5 to 64, 0.25 
to 64, and 0.25 to 32 µg/mL, respectively, and MIC50 and 
MIC90 values were 2, 2, and 1 µg/mL and 4, 32, and 16 µg/
mL, respectively.

The total number of dead fish of the control, ENR, 
DOX, and FFC groups were 17,240, 10,293, 7701, and 
4873, respectively, during the treatment period. Death 
numbers of experimental groups were significantly 
different (P < 0.001). Death numbers as a function of time 
in the antimicrobial treatment period are shown in Figure 
2. Cumulative mortality rates (%) of the control, ENR, 
DOX, and FFC groups were 57.47, 34.31, 25.67, and 16.24, 
respectively, during 10 days. The groups were significantly 
different when compared according to cumulative 
mortality (P < 0.001). When compared to the treatment 
groups, the mortality rate was much higher in the control 
group (P < 0.001), although there was no significant 
difference between control and ENR groups on day 1 (P > 
0.05). However, there was a significant difference between 
control and ENR groups on day 2 (P < 0.01). FFC reduced 
the mortality as compared to the other groups after day 5 
(P < 0.001). There was no significant difference between 
DOX and FFC groups on days 1, 3, or 6 (P > 0.05). 

Figure 1. F. psychrophilum PCR results. M: 100-bp DNA ladder, 
1: negative control, 2: F. psychrophilum positive control (F. 
psychrophilum NCIMB 1947 strain), 3–5: F. psychrophilum PCR 
positive samples, 6–7: F. psychrophilum PCR negative samples.
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Compared to the control group, 10 fish from each 
of the treatment groups underwent gross external and 
internal examination and microbiological confirmation of 
RTFS during the treatment period. 

There were no specific findings about RTFS in the FFC 
group after the treatment. Between 4 to 8 fish died every 
day in this group. Bacteriological examination yielded 
no F. psychrophilum or other fish pathogens. Deaths 
continued to increase in the control group and the other 
treatment groups (ENR and DOX) after the treatment. 
For this purpose, 10 surviving fish in each raceway were 
bacteriological examined for 5 days. Sixteen isolates that 
were phenotypically identified as F. psychrophilum were 
cultured from the control group (4 isolates from the caudal 
peduncle, 2 isolates from the spleen, 1 each from the brain 
and liver), ENR group (1 each from the spleen, kidney, and 
brain), and DOX group (2 isolates from spleen, 2 isolates 
from brain, 1 from kidney).

4. Discussion
The aim of this study was to demonstrate the presence of 
F. psychrophilum and the antibacterial susceptibility and 
effective antibacterial treatment in RTFS. FFC was the 
most active among the antimicrobial agents used in this 
study.

The improvement of the environment and the use of 
recommended doses of antibacterials have shown benefits 
in controlling an outbreak of RTFS (21). In vitro antibiotic 
resistances vary according to geographic region in Turkey. 
Didinen et al. (6) reported that 13 F. psychrophilum isolates 
were determined from the Mediterranean region of Turkey, 
and the isolates were susceptible to DOX (100%) and ENR 
(76.9%). Five F. psychrophilum isolates, which were isolated 
from the Middle and Eastern Black Sea Regions of Turkey, 
were found to be susceptible (100%) to OTC and ENR (22). 
In our study, 26 isolates of F. psychrophilum were susceptible 
to 88% ENR, 62% DOX, and 81% FFC. There are limited 
data on antimicrobial efficacy investigations in vivo against 
many species of marine bacteria in Turkey. In this study, 
antimicrobial agents currently used in veterinary and 
aquaculture therapy were tested, and they included ENR, 
DOX, and FFC. No similar in vivo studies have apparently 
been performed on fish infected with F. psychrophilum.

In the FFC group, 4–8 fish died after the treatment. 
This situation may be related to a decrease in food intake. 
The fact that the fishes receiving ENR and DOX died 
could be related to RTFS, which is the etiological agent 
of F. psychrophilum. The most significant symptoms in 
fries were dark skin, spiral swimming, spinal column 
deformities, dorsal fin white spots or lysis, and failure to 

Table 2. Antimicrobial MICs, MIC ranges, MIC50, MIC90, and resistance rates by agar dilution method for F. psychrophilum isolates (n 
= 26). 

Antimicrobial
agents

Number of isolates with MIC ranges (µg/mL)
MIC range
(µg/mL)

MIC50

(µg/mL)
MIC90

(µg/mL)
Resistance
(%)

0.0312 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128 256 512

Enrofloxacin 1 5 9 8 1 1 1 0.5–64 2 4 12

Doxycycline 1 2 6 4 3 5 2 3 0.25–64 2 32 38

Florfenicol 5 5 4 4 3 1 3 1 0.25–32 1 16 19

 
MIC: Minimum inhibitory concentration; doxycycline was used as doxycycline hyclate.  
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Figure 2. Death numbers as a function of time in the antimicrobial treatment 
period (10 days).  



319

BOYACIOĞLU et al. / Turk J Vet Anim Sci

feed after the treatment in these groups. The results of 
the present study are in agreement with those of other 
researchers (11).

Authors reported successful use of ENR in field 
outbreaks of RTFS in in vitro investigations (8,14), but no 
correlation between MIC values and in vivo efficacy has 
been done. This study shows that this theoretical approach 
can be verified in vivo, at least in this treatment setting. 
Although susceptibility rates of ENR were higher than those 
of other antimicrobial agents, ENR did not reduce mortality 
in the current study. DNA gyrase (gyrA) is an important 
target for quinolones in F. psychrophilum infection and is 
transferred vertically in bacterial strains (23). Because of 
development of bacterial resistance (quinolone), ENR is 
used infrequently in the aquaculture industry.

Tetracyclines, especially OTC, are among the 
therapeutic agents most commonly used in aquaculture 
and veterinary treatment. Because of the widespread use 
of tetracyclines, resistance to it has disseminated to many 
species of marine bacteria, as noted in the present study for 
DOX. This drug also has greater plasma protein binding 
than the other tetracyclines, which produces a prolonged 
half-life of the drug in humans and animals. Nevertheless, 
and despite its higher lipophilicity and general recognition 
as the most potent agent (especially true for DOX and 
minocycline) in this class, and thus strong capacity for 
penetrating tissues (24,25), it may be of interest to assay 
the in vivo efficacy of this compound administered orally.

Although DOX treatment reduced mortality on the 
second day, the therapeutic activity remained at low 
levels. This activity was decreased after the fifth day, while 
providing a significant initial therapeutic efficacy of FFC. 
The reason for this might be chelation or resistance. Burka 
et al. (26) reported that tetracyclines may be inactivated by 
exposure to Ca2+ and Mg2+ in the water and the intestine 
of the fish. Resistance mechanisms have been examined 
in recent studies as potential causes of antimicrobial 
aquaculture treatment failures (27). Resistance to OTC in F. 
psychrophilum is caused by uptake of transposons carrying 
tetracycline resistance determinants or the resistance 
is caused by other unspecific changes in membrane 
permeability (9). tetQ was demonstrated to function in F. 
psychrophilum, conferring resistance to tetracycline (28).

FFC is used in aquaculture to control susceptible 
bacterial diseases. The Food and Drug Administration’s 
Center for Veterinary Medicine has approved FFC to 
control mortality in enteric septicemia, coldwater disease, 
furunculosis, streptococcal septicemia, and columnaris 
disease. In the present study, the protective effect of FFC 
against F. psychrophilum has been evaluated in rainbow 
trout fry. In our previous study (5), we found that 
FFC administration for 10 days caused reduced death 
numbers and mortality rates. In this study, in vivo results 

demonstrated that FFC was effective in RTFS treatment. 
Our findings are in agreement with the above-cited reports. 
Additionally, FFC’s better effectiveness may be dependent 
on high plasma levels in the current study. Popovic et al. 
(29) reported that decreased cytochrome P450 levels (e.g., 
7-ethoxyresorufin O-deethylase and aldrin epoxidase) 
under higher fenicol antibiotic concentrations resulted in 
high plasma drug levels and long drug half-life in rainbow 
trout. FFC resistance has been detected in a wide variety 
of bacterial species with increasing frequency (30). This 
situation may depend on residues from medicated feed 
(15). However, resistance to FFC could be overestimated 
by the occurrence of innately resistant bacteria with 
multiple nonspecific resistances, and use of FFC is not 
a necessary causal condition for the development of 
elevated frequencies of FFC resistance (31). Additionally, 
biochemical homogeneity of F. psychrophilum is relative 
(10). Therefore, antibiotic resistance may vary according 
to geographic region. Del Cerro et al. (32) suggested 
that the population of F. psychrophilum in Spain is 
quite heterogeneous, and resistance to OTC was much 
higher, while all isolates remained susceptible to FFC. 
MIC ranges for OTC and FFC were 2.4–9.7 µg/mL and 
1.2–2.4 µg/mL, respectively. In our study, MIC ranges 
for DOX and FFC were 0.5–64 µg/mL and 0.25-32 µg/
mL, respectively. The resistance of pathogenic bacteria to 
antibacterials is a growing problem in aquaculture (33). 
The consequences of increasing resistance in bacteria and 
the diminishing impact of therapeutic drugs reach far 
beyond the geographic origins of antibacterial compounds 
(34). Studies of antibiotic resistance in fish are needed for 
aquaculture management of microorganisms (23).

In conclusion, despite in vitro results, this study 
supports the claim that FFC has attenuating effects in 
RTFS. These effects of FFC seem to be closely involved 
with the suppressing of F. psychrophilum isolates’ activities. 
Eradication of F. psychrophilum from the hatchery is 
unlikely, and using an antibiotic unnecessarily to treat RTFS 
can lead to resistance to antibiotics. Furthermore, residues 
from medicated feed may enhance further development 
of antimicrobial resistance in F. psychrophilum. Due 
to the growing prevalence and incidence of infection 
and increasing antibiotic resistance, investigations on 
alternative antibiotics or vaccination should be given 
high priority. It should be noted that the antibiotic 
resistance profiles vary according to geographic area in F. 
psychrophilum infection.
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