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1. Introduction
Since the formation of the earth, naturally occurring 
radioactivity has been present as a result of varying 
concentrations of heavy metals contained in the soil (1). 
The earth also receives radiation from the sun and other 
sources located in outer space and these are collectively 
called cosmic radiation (2). However, cosmic radiations 
are relatively constant for any particular location although 
solar flares may cause occasional variations (3). Again, the 
radionuclide concentration of the soil differs from area to 
area thus the radiation dose that a person or an animal 
receives depends on geographical location (4). Every 
inhabitant of the world has therefore been exposed to small 
doses of radiation at all times from these natural sources 
referred to as natural background radiation. In addition to 
natural radioactivity, manmade sources of radiation exist 
and include radioactive materials injected into the body 
either for treatment or medical diagnosis, fallout from 
nuclear weapons, radiation from consumer products such 
as paints, and radiation from nuclear power plants (5). All 
the aforementioned sources can result in either external or 
internal exposure of living tissue to radiation. Additional 
sources of internal tissue radiation include tissue-inherent 
natural radionuclides and radioactive substances present 
in air, food, or water (6). All radioactive materials are 
potentially hazardous if absorbed into the body in 

sufficient quantity. Figure 1 below shows the various 
sources of routine radiation exposure. Much attention 
and research focus has been on evaluating the potential 
consequences of radiation on humans, which are among 
the most radiosensitive mammalian species. However, 
many plants and animals that are elements of food chains 
represent pathways for the transfer of radionuclides to 
humans and may contribute to human radiation exposure 
when contaminated (7). This review therefore focuses on 
radiation exposure of animals as an important component 
of the human food chain. 

2. Sources of radiation in animals
Besides the natural background radiation, animals may 
be exposed to radiation through accidents at nuclear 
power plants, medical diagnosis/treatment, and human 
activities (3). Following the expansion of the nuclear 
industry and increase in the use of radioactive materials 
over the last few decades, there has been increase in the 
concentrations of various pollutants including radioactive 
substances such as uranium, cadmium, cesium, and 
cobalt in the environment (8). These radioactive materials 
eventually circulate through the biosphere and end up 
in the air, drinking water, vegetables, and grasses (9). 
Animals are therefore exposed to radioactive substances 
through environmental contamination and grazing on 
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contaminated forages (10). Human activities, among 
others, also include the introduction of heavy metals into 
an animal’s environment in the form of rock phosphate 
fertilizers applied on croplands, application of pesticides 
to animals or their housing facilities, and use of herbicides 
(11,12). Rock phosphates, for example, contain high levels 
of radium, thorium, and uranium that in turn can lead to 
higher soil, outdoor air, and groundwater content of radon 
(decay product of uranium). 

A study undertaken in Algeria in 2011 to measure 
radioactivity levels in soil relative to the use of phosphate 
fertilizers showed that there was a significant increase in 
radionuclides in the fertilized soils compared with the 
virgin soils (13). Another study, by Saueia and Mazzilli (14) 
in Brazil assessing the distribution of natural radionuclides 
and the use of phosphate fertilizers in agriculture, revealed 
an increase of up to 0.87 and 7.6 Bq/kg grain and green 
crops, respectively. Radionuclides accumulated in arable 
soil can be incorporated metabolically into plants and 
eventually get transferred into the bodies of animals when 
contaminated forages are consumed (15). Other indirect 
sources of radiation result from the use of well (ground) 
water that contains radon or other radionuclides on animal 
farms and contamination of ingredients (e.g., bone meal) 
used for making animal feed (10). Groundwater releases an 
estimated 500 million curies of radon per annum globally, 
thus constituting a secondary source of the radionuclide 
(16). Furthermore, radiation experiments usually target 
animals as models for radiation rather than protecting 
them. Figure 2 shows the routes of exposure of animals and 
circulation of radionuclides in the environment following 
soil contamination.

3. Cellular effects of radionuclide exposure in animals
Radioactive decay of radionuclides incorporated into 
animal tissues through inhalation/ingestion results 
in internal exposure to radiation (3). Whichever way 

ionizing radiation is delivered, it has the potential to 
create harmful effects by causing neoplasia and genetic 
mutations at somatic and germ cell levels, respectively. 
This is brought about by cellular DNA alteration or 
damage and interference with metabolic pathways (17). 
The different types of DNA damage that may be induced 
by radiation include single-stranded breaks (SSB), double-
stranded breaks (DSB), sugar/base modifications, and 
DNA-protein cross-links (18). Three mechanisms usually 
involved in DNA damage are genomic instability, indirect 
DNA ionization by reactive oxygen species, and direct 
DNA ionization with subsequent chemical alteration of 
the bases to molecules that are no longer recognized as 
coding signals (17). The damaged DNA is usually not 
recognized by the sensory proteins, leading to recruitment 
of DNA repair enzymes. There is also a simultaneous 
generation of signals to delay the progression of cell cycle 
until the damaged DNA is repaired (19). Depending on 
the type, dose rate, and dose of the radionuclide, attempts 
to repair the damaged DNA may fail, leading to either cell 
death or transformation to a malignant state (20) (Figure 
3). The biological damage of radionuclide exposure in an 
animal depends on the distribution and retention of the 
radionuclide in the body, dose rate and dose of irradiation, 
the tissue irradiated, and size, age, and physiological status 
of the animal (21). 

4. Effect of radionuclide exposure on animal tissue
Damage caused to various organs and tissues of animals 
by radionuclides has been evidenced by several animal 
studies. Abo-Elezz (22) exposed Balady rabbits to direct 
solar radiation and observed 37.5% mortality after 6 h of 
continuous exposure. He also noted a decrease in average 
litter size and weight with increasing exposure to solar 
radiation. This is an indication that exposure of animals 
to high degrees of direct solar radiation can reduce 
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Figure 1. Sources and distribution of average radiation exposure 
for the world population (59).
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production efficiency. External exposure of animals, such 
as occurs mostly in cases of gamma radiation, may also 
cause symptoms of diarrhea due to loss of mucosal cells 
and cerebral syndrome as a result of damage to nerve 
tissues (8,23). Fallout irradiation may cause skin injury 
that may appear as thermal burns in exposed animals. 
Ionizing radiation may also cause clinico-pathologic effects 
that may include thrombocytopenia (resulting in blood 
clotting failure) and leucopenia (3). Radiothorium for 
instance has been shown to induce aggregation and lysis of 
erythrocytes, with alteration in shape from normal discoid 
to equinocytic (24). This will obviously result in marked 
reductions in the number of functional erythrocytes. 
Intraperitoneal or intramuscular injection of rats with 
thorium nitrate for 30 days showed the liver, spleen, 
and skeleton as major sites of thorium accumulation. 
The radionuclide was also found to localize in the brain, 
suggesting its ability to cross the blood–brain barrier. 
Inference from further experimental results indicates the 
effects of thorium on cholinergic functions associated with 
neurobehavioral changes (24). Exposure to radon on the 
other hand induced marked erythropenia and leucopenia 
in animals due to bone marrow suppression (25). Radon 
and its decay particles, when inhaled, can also attach to the 
respiratory epithelium, where its radioactive effects on the 
lung parenchyma can lead to cancer. Numerous neoplasias 
were observed in the nasal cavities of animals that inhaled 

alpha emitters (e.g., radon and uranium) and beta-gamma 
emitters (e.g., 144Ce and 90Sr), perhaps resulting from 
continuous irradiation of the nasal epithelium (26). In 
cases of internal exposure by ingestion of contaminated 
forage, radioactivity follows the gastrointestinal tract with 
local irradiation of the gut wall, especially by beta-particles 
(3).   

When radionuclides enter the bloodstream, they 
may either be distributed throughout the entire body or 
localized in some selective tissues based on their chemical 
properties and metabolism. Pellmar et al. (27) implanted 
adult Sprague Dawley rats with up to 20 depleted uranium 
alloy pellets in the gastrocnemius muscle for 18 months. 
They noted significantly elevated uranium concentrations 
in the kidneys, liver, spleen, brain, serum, tibia, skull, 
and urine at most time points. Several studies have also 
shown natural uranium to be a reproductive toxicant in 
rodents, possibly teratogenic to the developing fetus (28). 
Furthermore, the chemical and radiological activities of 
enriched and depleted uranium produced brain oxidative 
stress and induced negative effects on various behavioral 
parameters in rats (8). Houpert et al. (29) exposed rats to 
4% enriched uranium over a period of 6 weeks and they 
discovered uranium accumulation in the hippocampus, 
hypothalamus, and adrenals. They concluded that this 
exposure is associated with the sleep–wake cycle, affecting 
the spatial working memory and anxiety in the rodents. 
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The work by Lemercier et al. (30) demonstrated the ability 
of uranium to cross the blood–brain barrier in animals.

Similarly, animals that were exposed to very high doses 
of cesium showed changes in behavior, such as increased 
or decreased activity. Indeed, studies have shown that 
administration of cesium chloride to animals triggered 
stimulant and depressant central nervous system responses 
(31,32). Changes in preferred nesting sites, and reduced 
hatchability and fecundity were also observed in birds that 
lived in the Chernobyl zone and were exposed to chronic 
137Cs irradiation (8). Alterations in natural behavioral 
responses can have severe implications for survival of 
individuals and of population of some animal species. 
Yamashiro et al. (33) in their investigation of the effect 
of a nuclear plant accident on bull testes did not observe 
any adverse radiation-induced effect following chronic 
exposure to high doses of 134, 137Cs over a period of 10 
months. Overall, the highest deposition of 137Cs was found 
in muscle tissues. Transport of radiocesium between the 
gastrointestinal tract and body pool was studied in reindeer 
calves fed lichens. The net exchange of radiocesium 
between the gastrointestinal tract and body pool was more 
than four times higher than the amount ingested. It was 
concluded that radiocesium is rapidly recycled between 
the gastrointestinal tract and other body pools (34,35). 
Other animal studies indicated increased risk of cancer 
following either external or internal exposure to relatively 
high doses of 137Cs radiation. For instance, intravenous 
injection of 137Cs in the form of cesium chloride to dogs 
led to increased risk of all cancers combined in both males 
and females (31). 

Fukuda et al. (36) evaluated gamma-ray emitting 
artificial radionuclides in multiple organs of cattle located 
within the evacuation zone of the Fukushima nuclear power 
plant accident. They detected organ-specific deposition of 
radionuclides with short half-lives (e.g., 110mAg and 129mTe) 
in the liver and kidney, respectively. They also observed 
higher concentrations of radiocesium in fetal organs than 
in the corresponding maternal organs. Based on their 
report, the activity concentration of internally deposited 
radionuclides is greatly influenced by feeding conditions 
and geographic setup of the cattle farm. Stricker et al. (37) 
evaluated the impact of forages grown on phosphatic clays 
on concentrations of radionuclides in animals and their 
products. It was noted that concentrations of 226Ra, 210Po, 
and 210Pb in bones were three orders of magnitude higher 
than concentrations found in the muscle, suggesting the 
affinity of these high-risk radionuclides for the skeletal 
system. Inferences from some reports point to the fact 
that 210Pb may have some effects on the biokinetics and 
biodistribution of 210Po in animal tissues. For instance, 
210Po produced by the decay of skeletal 210Pb remains 
in the bones, whereas 210Po produced from soft tissue 

decay of 210Pb follows typical 210Po biokinetics (38). 210Pb 
is a radionuclide that is known to have a high skeletal 
bioaccumulation and it will therefore not be surprising to 
find accumulation of 210Po in the bones of exposed animals. 
This is a double whammy because grazing animals in 
particular are directly affected by consumption of forage/
feed contaminated by lead (either airborne or absorbed 
by plant roots), resulting in impaired erythrogenesis and 
central nervous system dysfunction (39). Moreover, acute 
lethal doses of 210Po can cause fatal damage to the bone 
marrow and severe damage to the kidneys, spleen, and 
gastrointestinal tract (40). 

Further studies in animals revealed that 210Po 
accumulates in the reproductive and hemopoietic systems 
and probably transfers from the mother to the embryo/
fetus, causing critical cells to suffer damage as a result of its 
alpha particles (41). This fetal exposure could cause failure 
of implantation, fetal miscarriage, or major malfunctions 
(42). Although the studies by Haines et al. (43) suggested 
the placenta as a barrier against the movement of 210Po 
from mother to fetus in rats, Paquet et al. (44) found that 
approximately 0.7%–1% of 210Po injected into pregnant 
baboons at 5 months was present in the fetus 7 days later. 
Analysis of data from fall-out irradiation suggests that 
radiation exposure in local territories about 1480 kBq/m2 
superimposed by other environmental factors does have 
an impact on animal health (45). The summary of these 
radionuclide effects is that when animals are constantly 
exposed to radiation through air, feed, water, and other 
manmade sources, their performance is impaired and 
the survivability of their species become stressed and 
threatened. The estimated survival rate of different livestock 
species from short-term external gamma radiation doses 
is shown in Figure 4.
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external gamma radiation doses. Adapted from Berger et al. (61).
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5. Public health effects of animal exposure to ionizing 
irradiation
The bioaccumulation of some important radionuclides 
in specific tissues/organs of animals of food chain 
significance, and their level of absorption from the 
gastrointestinal tract can constitute a public health threat. 
In some developed countries, farm livestock provide about 
40% of food energy, 67% of protein, and 75% calcium in 
the diet of the people. Exposure of livestock animals to 
ionizing irradiation can be a significant pathway to human 
exposure through consumption of contaminated animal 
products (46). This is due to the fact that grazing livestock 
are effective collectors of radionuclide contaminants from 
vegetation. Several important pathways for the transfer 
of radionuclides to the human diet involve animal food 
chains such as milk, eggs, meat, and fish (7). For instance, 
some important radionuclides such as 137Cs, 131I, and 90Sr 
are readily transferred from animal fodder to the milk. 
In addition, 90Sr is transferred to the bones together with 
the congeneric calcium, whereas 137Cs is preferentially 
transferred to soft tissues, especially muscle, with its 
congener potassium (7,35). Iodine, on the other hand, is 
completely absorbed in the animal’s gastrointestinal tract 
and concentrates in the thyroid, from where it is effectively 
transferred to milk and eggs (47). Caribou, fish, and 
seafood are important pathways for the transfer of 210Po in 
the human diet. The biological half-life of 210Po in humans 
as determined by its retention from the consumption of 
shellfish was 40 days, and more than 100 days from the 
consumption of caribou meat (48,49). Although 131I has a 
relatively short half-life of a few weeks, the half-life of 137Cs 
is up to 30 years and it can remain in the environment for 
a long time (9). The biological half-life of a radionuclide is 
defined as the time taken for its activity concentration in 
tissues, milk, or eggs to decline by half of its initial value 
after cessation of feeding contaminated diet (50). 

Consumption of radionuclide-contaminated food 
will increase the amount of radioactivity inside a person 
and therefore increase internal exposure to radiation. 
For example, a year-old child that consumes 0.5 L of 
milk contaminated with 100 Bq/L of 131I will have 0.009 
mSv additional exposure (9). This may possibly increase 
the health risks associated with radiation exposure. The 
harmful effects of radionuclides arise mainly from tissue 
radiation as a result of radioactive decay and this in turn 
increases cancer risk (51). The degree of harm to human 
health depends on the type of radionuclides involved, 
amount ingested, and duration of exposure. For instance, 
210Po, an alpha-particle emitter, is one of the most toxic 
substances known because of its intense radioactivity 
and is therefore classified as a Group I human carcinogen 
(42,52). Concentrations as low as 1 µg have an activity 
of 1.66 × 108 Bq, and acute lethal doses may cause severe 
damage to the bone marrow, kidneys, spleen, digestive 
tract, and reproductive system (40,41). The preference 
therefore of important radionuclides for certain organs/
tissues for bioaccumulation may serve as an informational 
tool in making dietary choices, in which case, consumption 
of organs that tend to accumulate radionuclides may be 
avoided. The transfer of radionuclides to animal products 
is usually quantified using the transfer coefficient (2). 
The transfer coefficients, half-life, and gastrointestinal 
absorption of some important radionuclides in animal 
products are shown in the Table.

6. Measures for reducing radionuclide contamination in 
animals and their products  
Countermeasures aimed at reducing radionuclide 
contamination of food animals and their products usually 
involve treatment of land used for growing fodder crops 
or grazing, changes in animal management regime, 
administration of binding agents or analogues to animals, 
and delayed animal slaughter (53). Some adjustments 

Table. Characteristics and transfer coefficients of important radionuclides of food chain significance.

Radio
nuclide

Transfer coefficients (F) GI Abs.
(%) t½

Milk Beef Pork Chicken Eggs
131I 5.4E-3 6.7E-3 4.1E-2 8.7E-3 2.4 100 8.021 d
137Cs 4.6E-3 2.2E-2 2.0E-1 2.7 4.0E-1 100 30 y
90Sr 1.3E-3 1.3E-3 2.5E-3 2.0E-2 4.9E-1 30 28.7 y
210Po 2.1E-4 9.9E-4 N/A 2.4 3.1 50 138.38 d
210Pb 1.9E-4 7.0E-4 N/A N/A N/A 10 22.3 y

d = days; y = years; N/A = not available; Source: Howard et al. (49)
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that can be made in animal management systems include 
permanent housing and provision of uncontaminated 
feedstuff (particularly in exposure situations resulting from 
a nuclear accident), pasture management (e.g., growing 
of forage species with low potential for radionuclide 
uptake), and selective grazing (54). Administration of 
binding or chelating agents to animals aims at reducing 
gut uptake of radionuclides. Agents such as ammonium-
ironhexacyanoferrate and zeolites added to the diet of 
animals have been effective in reducing radiocesium from 
the gut (55). Hence, in Norway for example, ammonium-
ironhexacyanoferrate has been incorporated into saltlicks 
and rumen boli for administration to free-ranging 
animals (56). Similarly, supplementation of animal’s 
diets with a strontium analogue, calcium, reduces the 
activity concentration of radiostrontium in milk (55). 
Although administration of stable iodine to animals 
has been proposed as a countermeasure for radioiodine 
concentration in milk, there is the concern that the level of 
concentration of stable iodine in milk may then be raised 
above recommended levels (57). Delayed slaughtering of 
animals is another effective measure for truncating the 
movement of radionuclides up the food chain, particularly 
when combined with provision of uncontaminated feed 
(53).

7. Measures for reducing radionuclide transfer from 
animal products to consumers  
Radionuclide monitoring of animal-derived products, 
a ban on contaminated food, consumer dietary advice 
(avoiding foods that accumulate radionuclides), and 

food processing are all measures employed to reduce 
human radiation exposure through consumption of 
animal products (55). Food processing is effective in 
reducing radionuclide concentrations in foods although 
the retention factor depends on the processing procedure 
(7). Drying foods, for instance, tends to increase the 
radionuclide concentration compared with boiling (58). 
In dairy products, radionuclides are retained less in cream 
than in other milk products, whereas the concentration of 
90Sr in cheese is 5–10 times higher than that in milk as a 
result of the precipitation process in cheese production. 
Butter, however, contains none of the radionuclides found 
in milk (7).

8. Conclusion
The effects of ionizing radiation on exposed animals 
as evidenced by damage caused to various organs and 
tissues of such animals indicate that ionizing radiation 
can greatly impair the performance efficiency of animals, 
depending on the source, dose, and duration of exposure. 
Most important is the bioaccumulation of some important 
radionuclides in preferred animal tissues/organs, leading 
to contamination of products for human consumption. 
These two scenarios clearly demonstrate the need to 
protect livestock animals as much as possible from 
exposure to ionizing radiation through proper housing 
and management. Systems should also be put in place 
to monitor radionuclides in major food commodities in 
order to reduce human exposure to radiation through 
consumption of animal products.
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