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In both humans and animals, the major 
histocompatibility complex (MHC) molecules cluster 
plays a vital role against antigens, and thus is helpful for 
knowing the hosts’ resistance or susceptibility to infectious 
parasites and pathogens (1–3). The mammalian MHC 
gene is divided into functional regions including class I 
and class II (4). The MHC class II DQ and DR molecules 
are known to be associated with many diseases (5–8). In 
some vertebrates, there is a single copy of the DQ gene 
for the rat, pig, mouse, and rabbit, whereas in others like 
humans and dogs, multiple DQ genes have been observed 
but expression is limited to one copy only (9).

Variability in the number of DQ loci is reported in 
ruminants. For cattle, most haplotypes carry duplicated 
DQ genes that are mapped to the autosome 23q13-23 
(10–12). Evidence suggests that in these cases both DQ 
molecules are expressed (13). Recognition of a wider range 

of nonself-bodies is thought to have a combined effect of 
polymorphism along with the duplication of the MHC 
genes at the surface of the cell. 

The Chinese yakow is a remarkable hybrid of yak 
and Yellow cattle. They are often used for transportation, 
ploughing, milk, meat, and even cash income for local 
herdsman in the harsh environment of the Qinghai–
Tibetan Plateau (14). In farming the pastoral region, local 
farmers have favored to feed the Chinese yakow over the 
yak for adapting agricultural activities due to their power 
and tolerance (15).

To date, the MHC-DQA1 and DQA2 genes in this 
species remain unexplored. In the present study, we 
aimed to isolate and characterize the MHC-DQA1 and 
DQA2 genes and compare the amino acid sequence with 
the consensus sequence of its counterpart for finding 
the specific characterization from the Chinese yakow, 
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which could suffer due to long-term selection during 
close agricultural activities with local humans. This work 
will be helpful in understanding MHC diversity, as well 
as duplication in the immunological defense gene of the 
Chinese yakow, and the high genetic variation in the DQA 
gene that might be generated to recognize species as well 
as region-specific antigens.

In October 2013, five apparently healthy mature 
Chinese yakow (Bos grunniens × Bos taurus, 3♀ and 2♂) 
were sacrificed in the official slaughterhouse of Shangri 
La City, Diqing District, Yunnan Province, China. Liver 
samples were collected quickly and stored at –80 °C. The 
total RNA was extracted using a commercial kit (Beijing 
Tiangen Biotech Co., Ltd, Beijing, China). Furthermore, 
the DNase I was added to the RNA, and the cDNA was 
constructed following the manufacturer’s instructions, 
using RevertAidTM First Strand cDNA Synthesis Kits 
(Fermentas Inc., Ontario, Canada).

The three primers previously used to retrieve the 
buffalo DQA genes (16) were used to clone the complete 
cDNA fragments of the Chinese yakow Bogr×BoLA-
DQA1 and Bogr×BoLA-DQA2 genes. The forward primer 
(A1A2F: 5’-ACCTTGAGAAGAGGATGGTCCTG-3’) 
was shared. The other two reverse primers (A1R: 
5’-ATTGCACCTTCCTTCTGGAGTGT-3’ and A2R: 
5’-TCATAGATCGGCAGAACCACCTT-3’) were 
different. Therefore, the combined primers A1A2F and 
A1R, and A1A2F and A2R were used to amplify the 
Bogr×BoLA-DQA1 and Bogr×BoLA-DQA2 fragments, 
respectively. Using a Bioer Life Express Thermocycler, 
the PCR was carried out in a reaction volume of 25 μL, 
containing 2.0 μL template cDNA (about 100 ng/μL), 
12.5 μL PCR Power Mix, 1.0 μL 10 pmoL/μL of each 
primer, and 8.5 μL of double-distilled water. The PCR 
amplification program was as follows: denaturation at 94 
°C for 3 min, followed by 35 cycles; at 94 °C for 1 min, 59 
°C for 45 s, and 72 °C for 45 s, with a final extension of 10 
min at 72 °C. Amplicons were visualized on agarose gel 
stained with ethidium bromide. Finally, the PCR products 
were sequenced bi-directionally using an ABI 3730 DNA 
Analyzer (Applied Biosystems Inc.) with the above primers 
at the Sun Biotechnology Company (Beijing, China). All 
samples were sequenced twice.

The gene analysis for the cDNA sequence was 
conducted using GenScan software (http://genes.mit.
edu/GENSCAN.html). The sequences prediction was 
conducted using the ORF Finder software (http://
www.ncbi.nlm.nih.gov/projects/gorf/). The theoretical 
isoelectric point (pI) and molecular weight (Mw) of 
proteins were computed using the online Compute pI/
Mw Tool (http://www.expasy.org/tools/pi_tool.html). The 
complete cDNA and putative amino acid sequences were 
compared with the orthologous sequences. Phylogenetic 

analysis was done using MEGA software version 4 (17) by 
neighbor-joining method for coding regions of different 
DQA orthologous fragments from different species. 

Two nucleotide sequences of 783 bp (Bogr×BoLA-
DQA1) and 815 bp (Bogr×BoLA-DQA2) were amplified 
using the template cDNA from Chinese yakow. The cDNA 
sequence identification showed that the two genes are not 
homologous to any of the known Chinese yakow genes 
and it was then deposited into the GenBank database 
with accession numbers JQ904621 (for DQA1) and 
JQ904622 (for DQA2). Moreover, these sequences were 
submitted to the Immunopolymorphism database (www.
ebi.ac.uk/ipd/mhc/bola/nomenclature) with the official 
names Bogr×BoLA-DQA*0101 (DQA1) and Bogr×BoLA-
DQA*2001 (DQA2), respectively, based on BoLA-DQA 
sequence similarity.

The sequence predictions were conducted and the 
results showed that the 783 bp (including 7 bp and 8 bp 5’- 
and 3’-untranslated regions) and 815 bp cDNA fragments 
(including 6 bp and 41 bp 5’- and 3’-untranslated 
regions) denote two single genes containing a complete 
open reading frame (ORF) of 768 nucleotides, with both 
encoding a polypeptide of 255 amino acids. The pI of 
Chinese yakow DQA1 and DQA2 proteins was 5.52 and 
4.84, respectively. The Mw of the two assigned molecules 
was 28,202.35 and 27,904.82, respectively.

The Bogr×BoLA-DQA genes were compared with 
the reference BoLA-DQA gene sequences with GenBank 
accession numbers Y07898 and Y07820. The Bogr×BoLA-
DQA1 and -DQA2 showed the highest similarities 
(96% and 99%) at the nucleotide sequence level, with 
that of BoLA-DQA1 and -DQA2, respectively (Table). 
However, the sequence homology percentage between the 
Bogr×BoLA-DQA1 and -DQA2 was 86% less than that of 
cattle (BoLA-DQA) (Table). These findings were similar 
to the results from water buffalo (16). However, they 
illustrated that the Bubu-DQA genes have less similarity 
(93.9% and 97.7%) with that of cattle as compared to the 
fragment homology between the DQA genes (85.7%). 

In fact, the Bogr×BoLA-DQA1 and -DQA2 exhibited 
considerable variation with 99 nucleotide polymorphisms 
along the length of the coding regions (Figure 1), leading 
to 52 amino acid polymorphisms including 2 in the signal 
peptide (SP), 32 in the α1, 12 in the α2, 2 in the connecting 
peptide (CP), 2 in the transmembrane (TM), and 2 in the 
cytoplasmic (CY) domains (Figure 2). Nevertheless, the 
Chinese yakow has more amino acid substitutions than 
buffaloes with 45 amino acids differences (16).

In the present study, 20 peptide binding sites (PBSs) 
were retrieved (Figure 2). Within them, only 7 residues 
corresponding to the positions 11, 29, 35, 57, 60, 63, and 
70 were fixed between DQA1 and DQA2 molecules from 
the investigated different animal species. The remaining 
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Table. Sequence identity comparisons from the α1, α2, and CP/TM/CY domains between Bogr×BoLA-DQA1/DQA2 and BoLA-DQA1/
DQA2 genes (the amino acid identity is shown in parentheses).

Bogr×BoLA-DQA*2001 (DQA2) BoLA-DQA*0101 (DQA1) BoLA-DQA*2201 (DQA2)

Bogr×BoLA-DQA*0101 (DQA1)

α1 79.0 96.0 79.0

α2 88.0 95.0 88.0

CP/TM/CY 91.0 98.0 91.0

Entire gene 86.0 (79.0) 96.0 (92.0) 86.0 (78.0)

Bogr×BoLA-DQA*2001 (DQA2)

α1 80.0 100.0

α2 88.0 98.0

CP/TM/CY 91.0 100.0

Entire gene 86.0 (79.0) 99.0 (98.0)

BoLA-DQA*0101 (DQA1)

α1 80.0

α2 87.0

CP/TM/CY 91.0

Entire gene 85.0 (78.0)

Figure 1. Nucleotide polymorphism comparison between the Bogr×BoLA-DQA1 and Bogr×BoLA-DQA2.
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Figure 2. Amino acid sequences alignment between the Bogr×BoLA-DQA and orthologous DQA molecules [the green arrows denote 
the peptide binding sites (PBS). The deduced N-linked glycosylation sites are underlined ( ). The square ( ) denotes the position 
of residues associated with binding of CD4+ molecules. A point ( ) denotes amino acid identity and hyphen (-) indicates gap inserted 
to maximize]. The reference GenBank accession numbers for DQA1 alignment are Y07898 (BoLA-DQA*0101), U80884 (BoLA-
DQA*0102), U80872 (BoLA-DQA*0204), U80871 (BoLA-DQA*0401), AB257109 (BoLA-DQA*10011), Y07819 (BoLA-DQA*12011), 
D50454 (BoLA-DQA*12021), U80869 (BoLA-DQA*1401), DQ440647 (Bubu-DQA*0101), and M93430 (OLA-DQA1), respectively. 
The reference GenBank accession numbers for DQA2 alignment are Y07820 (BoLA-DQA*2201), D50045 (BoLA-DQA*22021), 
U80868 (BoLA-DQA*2401), Y14020 (BoLA-DQA*25012), Y14021 (BoLA-DQA*2602), Y14022 (BoLA-DQA*27012), AF037314 
(BoLA-DQA*2801), DQ440648 (Bubu-DQA*2001), M93433 (OLA-DQA2), and AY464652 (CLA-DQA), respectively.



140

XI et al. / Turk J Vet Anim Sci

13 PBS functional sites had different amino acid residues 
in the two polypeptide sequences. In addition, the 
Bogr×BoLA-DQA1 molecule possessed one rare residue 
at position 25 within the PBS motif that is uncommon in 
other investigated animal species (Figure 2). Obviously, 
with the advantage of such mutations, the nonsynonymous 
replacements at the PBS of the exon 2 region might have 
affected the antigen binding groove and could demonstrate 
differential ability binding to a wide spectrum of pathogens 
for adapting to cold and hypoxia environments during the 
long evolutionary history (18,19).

These results revealed that the Bogr×BoLA-DQA1 
and -DQA2 genes are more homologous with the 
corresponding sequences from their counterpart. Within 
coding regions, the replacements from 99 nucleotides 
and their corresponding 52 nonsynonymous mutations 
between Bogr×BoLA-DQA1 and -DQA2 molecules clearly 
indicated inconsistency as an allelic form. Moreover, the 
TM and CY domains of the bovine MHC class II genes 
often displayed locus-specific nucleotide sequence motifs 
(20). Different bovine DQA locus-specific motifs have 
also been identified in cattle and buffalo DQA sequences 
(16). Those motifs differ between the Bogr×BoLA-DQA1 
and -DQA2 genes, providing further evidence that these 
sequences might be nonallelic type.

From the phylogenetic analysis based on the 
investigated nucleotide sequences, the DQA1 and DQA2 
sequences from the Chinese yakow and other animals 
are separated into two major groups and this further 
indicates their independent evolutionary history (Figure 
3). It was apparent that the Chinese yakow is closest to 

cattle as shown by previous results (14,21). Moreover, 
higher deviation between the two clusters shows that the 
Bogr×BoLA-DQA1 and -DQA2 fall into two different 
loci.

For buffalo and cattle, there is some evidence to 
demonstrate that the DQA molecules belong to duplicated 
type and can be expressed together (13,16), which 
also looks to be similar for the Chinese yakow. Gene 
duplication is a frequent case in  eukaryotic organisms 
including yeast, plants, and animals. When the cellular 
hardware creates two copies of a gene, gene duplication 
occurs. Recent studies have demonstrated that the 
proportion of duplicated genes in mammalian genomes is 
correlated with environmental variability within a habitat. 
Moreover, the species under low habitat variability have 
a higher proportion of lost duplicated genes, particularly 
small-scale duplication genes, than those under high 
habitat variability. These events are an essential source of 
genetic originality leading to evolutionary novelty. One 
copy, freed from selection, could adapt to a new function, 
or be turned off or even serve as a “spare” if the original 
gene is damaged. Alternatively, the original function can 
be dissected, giving different roles to each copy of the 
gene. These results reveal that the species that inhabit 
variable environments may maintain more SSD genes 
in their genomes and hint that SSD genes are important 
for adapting to newly environments  and  surviving 
after environmental changes (22,23). Therefore, these 
duplicated genes (DQA1 and DQA2) with more mutations 
could improve the immunological ability to adapt to harsh 
environments for the Chinese yakow.

Figure 3. Phylogenetic tree based on the DQA nucleotide sequences of Chinese yakow (neighbor-joining method). The reference 
GenBank accession numbers for phylogenetic tree are Y07898 (BoLA-DQA*0101), DQ440647 (Bubu-DQA*0101), M93430 (OLA-
DQA1), AY464652 (CLA-DQA), Y07819 (BoLA-DQA*12011), D50454 (BoLA-DQA*12021), AF037314 (BoLA-DQA*2801), 
Y14020 (BoLA-DQA*25012), Y14021 (BoLA-DQA*2602), Y14022 (BoLA-DQA*27012), M93433 (OLA-DQA2), DQ440648 (Bubu-
DQA*2001), D50045 (BoLA-DQA*22021), and Y07820 (BoLA-DQA*2201), respectively.
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In summary, the two cDNAs encoded by the 
Bogr×BoLA-DQA1 and -DQA2 genes have been amplified 
and characterized for the first time, therefore expanding 
our knowledge of the MHC-DQA for ruminants. The 
Bogr×BoLA-DQA and -DQA2 genes are highly variable, 
especially in the α1 domain as in most ruminants. It would 
be more interesting to decrypt the effect of variability 
from Bogr×BoLA-DQA1 and -DQA2 on Chinese yakow 

resistance to adapt to extremely low temperature and 
hypoxia conditions in future.
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