

Turkish Journal of Veterinary and Animal Sciences

http://journals.tubitak.gov.tr/veterinary/

Research Article

Turk J Vet Anim Sci (2018) 42: 600-610 © TÜBİTAK doi:10.3906/vet-1803-89

A stereological study on calculation of volume values of the cervical spinal segments in ducks

Gamze ÇAKMAK^{1,*}, B, Hüseyin KARADAĞ¹, Zafer SOYGÜDER¹,

Murat Cetin RAĞBETLİ², Serkan YILDIRIM³, Hacı KELEŞ¹

¹Department of Anatomy, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van, Turkey ²Department of Histology and Embryology, Faculty of Medicine, Van Yüzüncü Yıl University, Van, Turkey ³Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey

Received: 29.03.2018 • Accepted/Published Online: 10.10.2018	•	Final Version: 10.12.2018
--	---	---------------------------

Abstract: In the present study, volume values of the cervical segments in the spinal cords of adult ducks weighing 3-4 kg were investigated. Volume values of the grey matter and white matter in the cervical segment of the spinal cord of the ducks were examined stereologically. Ten ducks (genus Anas) without regarding the sex of the animals. All animals were perfused using 10% formaldehyde. The animals were kept in 10% formaldehyde for 1 week to ensure fixation. The ducks were then dissected. The cervical segments were uncovered by removing the cervical vertebrae. Tissue samples were obtained from each of the cervical spinal segments, and 5-µm-thick cross-sections were obtained from these samples. Sampling was performed at a ratio of 1/250 to obtain 12 cross-sections from each cervical segment of the animals. These sections were stained using the hematoxylin and eosin staining technique. Photos were taken under a microscope. Volume values of whole tissue, grey matter, and white matter were calculated for each cervical segment of the spinal cord of the ducks. Cavalieri's principle was employed for the calculation. As a result, the vertebral column was used as a guide to identify the cervical segments of the spinal cord. The cervical segments were also obtained by dissection without using a decalcification process. It was determined that the number of segments was 15. When mean volume values of the whole cervical segment of the spinal cord in the ducks were evaluated, the highest mean volume was determined as 4.224 mm³ in segment C15. The cervical spinal segment with the lowest value of white matter was C7 (0.915 mm³). When the volume values of the grey matter of the cervical segments of the ducks were examined, it was determined that segments C14 and C15 had the highest values, calculated as 0.511 mm³ and 0.513 mm³, respectively. It was determined that segments C12, C13, C14, and C15 were involved in the cervical enlargement.

Key words: Cavalieri's principle, cervical segment, duck, spinal cord, stereology, volume

1. Introduction

The duck, belonging to the family Anatidae from the order Anseriformes of the class Aves, is from the genus Anas. The present study aimed to stereologically investigate the cervical spinal cord segment of ducks. In poultry, the spinal cord (SC) starts from the foramen magnum, extends to the coccygeal section at the end of the vertebral column, and does not form a cauda equina-it enters into a terminal thread. The spinal cord is thin, narrow, and long in poultry (1). The meninges of the brain—the dura mater, the arachnoid, and the pia mater-also surround the spinal cord (2). In poultry, the spinal cord is examined in 4 parts: cervical (C), thoracic, lumbosacral, and caudal (3). In poultry, the outside area of the spinal cord is formed by white matter (WM), while its inside is formed by grey matter (GM) (2). In cross-section, the grey matter has the appearance of a capital H. The central canal is a visible canal located in the middle of the capital H (4).

Stereology is a discipline that can evaluate and reveal characteristics of 2-dimensional structures in 3 dimensions (5,6). Unbiased methods using stereological techniques are preferred instead of biased methods (7). It has been stated that volume values of every kind of structure can be calculated with Cavalieri's principle by distinguishing the borders, regardless of the relationship of a tissue or biological structure with the surrounding structures (8).

A literature review showed that anatomical and stereological studies have not been done on the cervical segment of the spinal cord in ducks of the genus Anas.

The aim of the present study was to determine total volume, grey matter volume, and white matter volume of the cervical spinal segments in adult ducks. The obtained results are presented here as reference values for information sources in the international literature.

^{*} Correspondence: vetgamze@hotmail.com 600

2. Materials and methods

2.1. Animals

A total of 10 adult ducks (*Anas*) of both sexes weighing 3–4 kg were used as the material in the present study. The animals, which were anesthetized by injection of ketamine hydrochloride (50 mg/kg IV) (9), were perfused using the intracardiac method (10) using 10% formaldehyde. The ducks were kept in the formaldehyde pool for the fixation process for 1 week following the perfusion process.

2.2. Removal of the spinal cord

In order to uncover the cervical vertebrae of the fixed ducks, the dissection process began with removal of the soft tissues around the vertebrae. The arcus vertebrae of the cervical vertebrae were then removed. All of the bone tissues were not extirpated because segmentation of the spinal cord was performed with the presence of bone tissue where the spinal cord was located. Tissue samples were obtained from each segment after segmentation (11).

2.3. Sampling method

A pilot study was carried out first to identify the number of animals, the number of cross-sections, and the samples to be used in the study. Since the current studies in the literature state that the relative error of the error coefficient was determined as 10% for stereological studies, the number of animals required for the study was 5 in order to obtain this value (12,13). For this reason, 5 adult ducks were used in the pilot study. In calculation of the coefficient of error for the sampling method in the present study, the total variant square root/total number of points was taken as a basis. SHTEREOM 1.0 software was used to calculate the number of cross-sections (8,14).

Tissues dissected from the spinal cord cervical segments of the ducks were subjected to tissue processing to conduct the pilot study. All tissues were embedded vertically in paraffin in the same direction following the tissue processing. Transverse sections of 5 µm thick were obtained from these tissues, embedded, and blocked in paraffin via rotary microtome (Leica RM 21, 35, Nussloch, Germany) until the tissue was finished by using a random systematic sampling method. These sections were transferred onto microscope slides. The first step of deparaffinization was ensured by keeping them in a drying oven. The deparaffinization process was then finished by passing them through a series of xylol and alcohol. The sections were stained using hematoxylin and eosin and covered with coverslips (11,15). Cross-sections were sampled by performing the stepping at a ratio of 1/250 to obtain 12 cross-sections from each segment of the animals. One out of the first 250 cross-sections was randomly chosen for systematic random sampling. Every 250th cross-section was then placed on the microscope slide after counting. Results obtained from the pilot study

were included in the original study, as the values from the pilot study were appropriate for the present study.

2.4. Image analysis

Stereological stepping was needed to examine the duck spinal cords, because the spinal cord has a large structure in poultry at 4× magnification. Stereological stepping was done using a motorized stage and photographs were taken. Hence, measurements were obtained from 4× magnification photos. Point grid and 4× magnification were used for calculating the area and then volume. SHTEREOM 1.0 software was used to complete the calculations (Figure 1). In addition to the program, Cavalieri's principle was applied as the calculation method (16). Total volumes of 15 cervical segments of the spinal cord, total volume of grey matter, and total volume of white matter of the ducks were calculated (Figures 2 and 3). The number of points was used because the ratio of points could be included as the volume in the calculation of volume values (7,17).

In this study, a one-way ANOVA test was applied for the comparison between the segments. SPSS was used for statistical analysis.

3. Results

When mean volume values of the entire cervical segment of the spinal cord in the ducks were evaluated, the highest mean volume was 4.224 mm³ in segment C15. This value, which was 3.735 mm³ in segment C1, decreased to 2.959 mm³ by showing a distinct decline up to segment C5. This value increased to 3.126 mm³ in segment C8. The total volume value of the cervical segment, which continued to increase in segments C9, C10, and C11, was 3.701 mm³ in segment C12. While this value was 4.139 mm³ in segment C13, it was 4.218 mm³ in segment C14 and 4.224 mm³ in segment C15 (Table 1).

When volume values of the white matter in the spinal cord cervical segments of the ducks given in Table 2 were examined, the highest value belonged to segment C5 (1.192 mm³), while the lowest value belonged to segment C7 (0.915 mm³). While volume of the white matter was 1.042 mm³ in segment C1, it was 1.054 mm³ in segment C2. This value was 1.240 mm³ in segment C12, decreasing to 1.171 mm³ in segment C13. It decreased further for segments C14 and C15, with values of 0.994 mm³ and 0.991 mm³, respectively.

When volume values of the grey matter in the spinal cord cervical segments of the ducks were examined, it was determined that segments C14 and C15 had the highest values, calculated as 0.511 mm³ and 0.513 mm³, respectively. Mean volume value of the grey matter of segment C1 was 0.425 mm³; this value decreased until segment C9. Mean volume value of the grey matter was 0.319 mm³ in segment C10, and it increased up to segment C15 (Table 2).

Figure 1. Image analysis by SHTEREOM 1.0 program.

Figure 2. The cervical spinal segment of the duck at $4 \times$ magnification (hematoxylin and eosin).

As the grey matter/white matter volume ratios of the cervical segments of the ducks in Table 2 were examined, the highest mean volume ratio was found in segment C15; this value was calculated as 0.941%. The lowest grey matter/white matter volume ratio was 0.300%, which belonged to segment C5. While the GM/WM volume ratio was 0.481% in segment C1, this volume ratio decreased until segment C5. This value started to increase at segment

C6 and showed a significant increase from segment C13.

When the results of the white matter/spinal cord volume ratio in the cervical spinal segments of the ducks were examined, the highest value was observed as 0.367% in segment C8. The WM/SC volume ratio of segment C1 was calculated as 0.280%. This value was 0.290% for segments C2 and C3. The WM/SC volume ratio was seen to increase until segment C8. This value was 0.322% in

Figure 3. The cervical spinal segment of the duck at $4 \times$ magnification (hematoxylin and eosin).

segment C9; it then decreased. The lowest white matter/ spinal cord volume ratio belonged to segments C14 and C15; this ratio was determined as 0.240% (Table 1).

The values given in Table 1 indicate that the lowest grey matter/spinal cord volume ratio of the cervical spinal segments of the ducks was 0.090%, which belonged to segment C5. The highest grey matter/spinal cord volume ratio was observed in segments C14 and C15 (0.120%). The GM/SC volume ratio of segment C1 was 0.119%. This ratio decreased until segments C9 and C10. There was a significant increase in segment C13, the value of which was calculated as 0.115%.

In addition, it was determined that while the grey matter volume values were higher in segments C14 and C15 compared to the other segments, the white matter volume ratios were lower in these segments than in the other segments. While the white matter volume values were high for segments C1 and C2, volume values of grey matter were low in segments C1 and C2 (Table 2).

Values of the noise and coefficient of error (CE) corresponding to whole tissue (Table 3), white matter (Table 4), and grey matter (Table 5) belonging to the cervical spinal segments of the ducks were calculated. The noise and coefficient of error (CE) values were calculated and volume calculation was performed with the SHTEREOM program.

It was determined that the average CE of whole tissue of the cervical segments was 0.0334. The average CE of white matter of the cervical segments was 0.0441. It was determined that the average CE of grey matter of the cervical segments was 0.0433 in this study.

The mean number of points for whole tissue was calculated as follows: C1 = 1023, C2 = 978, C3 = 936, C4

= 924, C5 = 919, C6 = 918, C7 = 819, C8 = 865, C9 = 904, C10 = 913, C11 = 943, C12 = 1024, C13 = 1145, C14 = 1167, C15 = 1154. It was determined that the highest mean number of points for the whole tissue of the cervical spinal segments belonged to the C14 segment, and the lowest mean number of points belonged to segment C7.

The mean number of points for the white matter of the cervical spinal segments was calculated as follows: C1 = 491, C2 = 568, C3 = 513, C4 = 524, C5 = 522, C6 = 524, C7 = 499, C8 = 507, C9 = 520, C10 = 521, C11 = 532, C12 = 559, C13 = 585, C14 = 563, C15 = 559. The highest mean number of points for the white matter of the cervical spinal segments belonged to segment C13. The lowest mean number of points belonged to segment C1.

The mean number of points for the grey matter of the cervical spinal cord was calculated as follows: C1 = 667, C2 = 555, C3 = 501, C4 = 513, C5 = 484, C6 = 460, C7 = 463, C8 = 467, C9 = 518, C10 = 522, C11 = 542, C12 = 508, C13 = 726, C14 = 826, C15 = 856. The highest mean number of points for the grey matter of the cervical spinal segments belonged to segment C15. The lowest mean number of points belonged to segment C6.

3.1. Data analysis results

When the total volume value of the cervical segment in ducks was examined statistically, no difference was found between segments C1, C2, and C12. While no difference was found between segments C3 and C11, the difference between these segments and the other segments was significant. There was no difference between segments C4, C5, C6, C7, C8, C9, and C10; however, a difference was observed between the other segments and these segments. While there was no difference between segments C14 and C15, the difference between these segments and the

Table 1. Volume values of the cervical spinal cord of ducks (VVSC) (mm³); volume ratios of the white matter/spinal cord in the cervical spinal segments of ducks (WM/SC) (%); volume ratios of the grey matter/spinal cord in the cervical spinal segments of ducks (GM/SC) (%).

			Number	r of anima	1								
			D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	Mean
		VVSC	2.666	2.113	4.537	6.180	3.952	3.103	4.092	4.443	4.009	2.250	3.735
	C1	WM/SC	0.195	0.396	0.379	0.250	0.399	0.203	0.149	0.371	0.159	0.306	0.280
		GM/SC	0.178	0.174	0.097	0.126	0.107	0.118	0.093	0.078	0.089	0.130	0.119
		VVSC	2.210	2.185	4.663	4.396	3.691	3.327	3.995	4.508	3.395	2.973	3.534
	C2	WM/SC	0.271	0.300	0.365	0.373	0.442	0.197	0.158	0.366	0.202	0.228	0.290
		GM/SC	0.161	0.157	0.075	0.067	0.098	0.101	0.092	0.076	0.091	0.107	0.102
		VVSC	2.033	3.449	3.272	4.186	4.223	2.922	3.764	3.944	3.446	2.572	3.381
	C3	WM/SC	0.329	0.481	0.222	0.406	0.383	0.236	0.176	0.178	0.211	0.283	0.290
		GM/SC	0.159	0.098	0.090	0.062	0.088	0.104	0.086	0.074	0.079	0.101	0.094
		VVSC	2.174	3.146	4.176	4.414	4.067	3.045	3.778	3.402	2.962	2.239	3.340
	C4	WM/C	0.321	0.232	0.415	0.389	0.415	0.229	0.187	0.199	0.246	0.281	0.291
		GM/SC	0.135	0.084	0.068	0.060	0.074	0.096	0.076	0.094	0.088	0.164	0.093
		VVSC	3.211	2.333	4.071	3.793	3.598	3.395	3.348	2.951	3.258	3.254	3.321
	C5	WM/SC	0.538	0.312	0.400	0.448	0.469	0.500	0.206	0.237	0.222	0.193	0.352
		GM/SC	0.082	0.111	0.072	0.088	0.085	0.086	0.091	0.100	0.084	0.101	0.090
		VVSC	3.301	3.301	3.782	4.002	3.598	2.904	3.363	2.474	3.413	3.038	3.318
	C6	WM/SC	0.454	0.529	0.457	0.439	0.192	0.248	0.210	0.295	0.210	0.210	0.324
		GM/SC	0.080	0.076	0.066	0.065	0.084	0.095	0.087	0.106	0.082	0.120	0.086
		VVSC	1.762	3.016	3.142	4.027	3.034	2.691	3.009	2.727	3.074	3.103	2.959
	C7	WM/SC	0.400	0.232	0.554	0.432	0.214	0.271	0.243	0.272	0.238	0.219	0.307
		GM/SC	0.167	0.094	0.082	0.064	0.115	0.102	0.088	0.094	0.087	0.102	0.099
	C8	VVSC	1.491	2.987	3.533	3.579	3.807	2.694	3.850	3.608	2.828	2.882	3.126
	C8	WM/SC	0.489	0.585	0.221	0.481	0.177	0.280	0.438	0.471	0.248	0.225	0.361
	C9 C10	GM/SC	0.180	0.084	0.078	0.070	0.082	0.090	0.080	0.082	0.105	0.121	0.097
		VVSC	2.279	3.356	3.525	3.464	4.197	3.088	3.424	2.651	3.366	3.312	3.266
		WM/SC	0.252	0.510	0.495	0.483	0.397	0.215	0.210	0.273	0.200	0.190	0.322
		GM/SC	0.183	0.083	0.089	0.072	0.078	0.105	0.082	0.105	0.093	0.112	0.100
		VVSC	2.120	3.468	3.421	3.937	4.367	3.074	3.858	2.485	3.142	3.139	3.301
		WM/SC	0.271	0.196	0.512	0.431	0.377	0.536	0.445	0.281	0.222	0.201	0.347
		GM/SC	0.168	0.090	0.087	0.067	0.085	0.113	0.072	0.117	0.094	0.115	0.100
		VVSC	2.297	2.647	4.432	4.251	4.284	4.085	3.879	1.990	3.410	2.814	3.409
	C11	WM/SC	0.282	0.259	0.388	0.395	0.373	0.159	0.171	0.371	0.211	0.195	0.280
		GM/SC	0.142	0.118	0.070	0.065	0.095	0.085	0.087	0.130	0.081	0.159	0.103
		VVSC	2.275	3.388	4.443	5.238	4.201	3.215	4.074	3.504	3.551	3.121	3.701
	C12	WM/SC	0.274	0.464	0.379	0.318	0.383	0.518	0.157	0.456	0.197	0.203	0 334
	012	GM/SC	0.166	0.074	0.074	0.058	0.085	0.100	0.089	0.130	0.083	0.118	0.937
		VVSC	2 286	3 908	5 115	4 974	4 157	4 074	4 269	4 064	4 074	4 468	4 1 3 9
	C13	WM/SC	0.601	0.415	0.328	0.319	0.155	0.170	0.385	0.398	0.157	0.045	0.297
		GM/SC	0.273	0.109	0.080	0.063	0.085	0.170	0.081	0.092	0.137	0.178	0.115
nt		VVSC	2 033	4 316	2 709	5 101	5 328	3 363	5.631	4 009	4 1 1 1	4 584	4 218
me	C14	WM/SC	0.533	0.375	0.177	0.332	0.248	0.208	0.213	0.120	0.153	0.030	0.240
seg	014	GM/SC	0.555	0.373	0.1//	0.002	0.1240	0.200	0.213	0.129	0.133	0.039	0.120
r of	<u> </u>	VVSC	2 021	/ 315	2 712	5 105	5 3 2 5	3 367	5 700	4.002	4 120	4 580	1 224
lbe	C15	WMISC	0.522	4.313	0.175	0.322	0.247	0.210	0.211	4.002	4.120	4.360	0.240
Nun	015	CM/SC	0.552	0.3/4	0.1/5	0.555	0.122	0.210	0.127	0.124	0.150	0.038	0.240
4		GMI/SC	0.158	0.086	0.096	0.09/	0.125	0.111	0.13/	0.125	0.091	0.182	0.120

Table 2. Volume values of the white matter of the cervical spinal segments of ducks (VVWM) (mm³); volume values of the grey matter of the cervical spinal segments of ducks (VVGM) (mm³); volume ratios of the grey matter/white matter in the cervical spinal segments of ducks (GM/WM) (%).

			Number	r of anima	ıl								
			D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	Mean
		VVWM	0.520	0.837	1.720	1.550	1.579	0.631	0.610	1.650	0.640	0.690	1.042
	C1	VVGM	0.475	0.368	0.441	0.784	0.425	0.369	0.384	0.350	0.360	0.307	0.426
		GM/WM	0.913	0.439	0.256	0.505	0.269	0.584	0.629	0.212	0.562	0.444	0.481
		VVWM	0.600	0.656	1.703	1.640	1.635	0.657	0.635	1.650	0.689	0.680	1.054
	C2	VVGM	0.357	0.344	0.354	0.297	0.365	0.338	0.368	0.344	0.311	0.319	0.339
		GM/WM	0.595	0.524	0.207	0.181	0.223	0.514	0.579	0.208	0.451	0.469	0.395
		VVWM	0.670	1.659	0.727	1.700	1.620	0.690	0.665	0.703	0.730	0.730	0.989
	C3	VVGM	0.324	0.341	0.297	0.263	0.376	0.306	0.327	0.294	0.274	0.262	0.306
		GM/WM	0.483	0.517	0.408	0.154	0.232	0.443	0.491	0.418	0.375	0.358	0.387
		VVWM	0.700	0.730	1.735	1.720	1.690	0.700	0.710	0.680	0.730	0.630	1.002
	C4	VVGM	0.294	0.265	0.286	0.265	0.303	0.294	0.289	0.320	0.263	0.368	0.294
		GM/WM	0.420	0.363	0.164	0.154	0.179	0.420	0.407	0.470	0.360	0.584	0.352
		VVWM	1.730	0.730	1.630	1.700	1.690	1.700	0.692	0.700	0.725	0.631	1.192
	C5	VVGM	0.265	0.259	0.296	0.337	0.307	0.294	0.308	0.297	0.275	0.329	0.296
		GM/WM	0.153	0.354	0.181	0.198	0.181	0.172	0.445	0.424	0.379	0.521	0.300
		VVWM	1.500	1.748	1.730	1.760	0.692	0.723	0.707	0.730	0.720	0.638	1.094
	C6	VVGM	0.295	0.252	0.251	0.263	0.303	0.277	0.293	0.262	0.283	0.366	0.284
		GM/WM	0.176	0.144	0.145	0.149	0.437	0.383	0.414	0.358	0.393	0.573	0.317
		VVWM	0.705	0.700	1.741	1.740	0.650	0.730	0.733	0.743	0.732	0.680	0.915
C7 C8	VVGM	0.265	0.286	0.260	0.259	0.350	0.276	0.267	0.257	0.268	0.317	0.280	
	GM/WM	0.418	0.408	0.149	0.148	0.538	0.378	0.364	0.345	0.366	0.466	0.358	
	VVWM	0.730	1.750	0.748	1.724	0.675	0.755	1.690	1.700	0.702	0.650	1.112	
	C7 C8	VVGM	0.269	0.251	0.276	0.252	0.314	0.245	0.308	0.296	0.298	0.349	0.285
		GM/WM	0.368	0.143	0.368	0.146	0.465	0.324	0.182	0.174	0.424	0.536	0.313
	C8 C9	VVWM	0.575	1.713	1.748	1.675	1.670	0.665	0.720	0.725	0.674	0.630	1.079
	C9	VVGM	0.418	0.281	0.314	0.252	0.330	0.325	0.284	0.280	0.316	0.372	0.317
		GM/WM	0.726	0.164	0.179	0.150	0.197	0.488	0.394	0.386	0.468	0.590	0.374
		VVWM	0.575	0.680	1.753	1.700	1.650	1.650	1.720	0.700	0.700	0.635	1.176
	C10	VVGM	0.358	0.314	0.300	0.267	0.375	0.350	0.279	0.292	0.298	0.361	0.319
		GM/WM	0.622	0.461	0.171	0.157	0.227	0.212	0.162	0.417	0.425	0.568	0.342
		VVWM	0.650	0.686	1.720	1.683	1.589	0.650	0.665	0.740	0.720	0.550	0.965
	C11	VVGM	0.328	0.314	0.314	0.278	0.411	0.350	0.338	0.260	0.277	0.448	0.331
		GM/WM	0.504	0.457	0.182	0.165	0.258	0.538	0.508	0.351	0.384	0.814	0.416
		VVWM	0.625	1.573	1.685	1.670	1.610	1.667	0.640	1.600	0.700	0.635	1.240
	C12	VVGM	0.378	0.254	0.330	0.308	0.359	0.323	0.365	0.400	0.297	0.370	0.338
		GM/WM	0.604	0.161	0.195	0.184	0.222	0.193	0.570	0.250	0.424	0.582	0.338
		VVWM	1.374	1.625	1.680	1.590	0.645	0.694	1.645	1.620	0.640	0.203	1.171
	C13	VVGM	0.626	0.427	0.410	0.314	0.355	0.438	0.346	0.377	0.354	0.797	0.444
		GM/WM	0.455	0.262	0.244	0.197	0.550	0.631	0.210	0.232	0.553	3.926	0.726
		VVWM	1.565	1.620	0.480	1.725	1.325	0.700	1.202	0.520	0.630	0.180	0.994
	C14	VVGM	0.462	0.377	0.268	0.513	0.662	0.366	0.798	0.482	0.371	0.820	0.511
		GM/WM	0.295	0.232	0.558	0.297	0.499	0.522	0.663	0.926	0.558	4.555	0.910
		VVWM	1.560	1.618	0.475	1.730	1.320	0.710	1.208	0.500	0.620	0.175	0.991
	C15	VVGM	0.465	0.375	0.262	0.509	0.658	0.375	0.785	0.495	0.375	0.835	0.513
		GM/WM	0.298	0.231	0.551	0.294	0.498	0.528	0.649	0.990	0.604	4.771	0.941

			Number	of segme.	nt													
			CI	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	Mean
-	2	Noise	738	612	563	602	889	914	488	413	631	587	636	630	633	812	820	665
-	Ы	CE	0.0372	0.0409	0.0429	0.0412	0.0342	0.0337	0.0455	0.0496	0.0402	0.0419	0.0403	0.0403	0.0401	0.0358	0.0349	0.0399
-	Ê	Noise	585	605	955	871	646	914	835	827	929	960	733	938	1082	1195	1190	884
	77	CE	0.0417	0.0414	0.0332	0.0347	0.0402	0.0338	0.0350	0.0354	0.0335	0.0332	0.0376	0.0336	0.0330	0.0294	0.0287	0.0350
	É C	Noise	1256	1291	906	1156	1127	1047	870	978	976	947	1227	1230	1416	750	820	1066
	CU C	CE	0.0289	0.0285	0.0341	0.0301	0.0303	0.0319	0.0346	0.0329	0.0326	0.0332	0.0293	0.0296	0.0276	0.0385	0.0387	0.0321
_	Ž	Noise	1711	1217	1159	1222	1050	1108	1115	991	959	1090	1177	1450	1377	1437	1425	1233
	D4	CE	0.0252	0.0293	0.0303	0.0295	0.0316	0.0310	0.0310	0.0329	0.0337	0.0312	0.0296	0.0271	0.0281	0.0276	0.0268	0.0297
-	Ľ	Noise	1094	1022	1169	1126	966	966	840	1054	1162	1209	1186	1163	1151	1475	1468	1141
	сЛ	CE	0.0308	0.0320	0.0301	0.0305	0.0323	0.0322	0.0352	0.0317	0.0302	0.0297	0.0296	0.0301	0.0300	0.0270	0.0265	0.0305
		Noise	859	921	809	843	940	804	745	746	855	851	1131	890	1128	931	925	892
	5	CE	0.0348	0.0336	0.0357	0.0349	0.0333	0.0361	0.0370	0.0369	0.0348	0.0348	0.0307	0.0342	0.0309	0.0333	0.0327	0.0342
_		Noise	1133	1106	1042	1046	927	931	833	1066	948	1068	1074	1128	1182	1559	1453	1100
-	'n	CE	0.0304	0.0310	0.0317	0.0316	0.0337	0.0333	0.0354	0.0317	0.0335	0.0314	0.0313	0.0307	0.0298	0.0259	0.0256	0.0311
	°C	Noise	1230	1248	1092	942	817	685	755	666	734	688	551	970	1125	1110	1050	933
lsm	ĥ	CE	0.0293	0.0291	0.0313	0.0334	0.0352	0.0391	0.0370	0.0323	0.0375	0.0388	0.0433	0.0329	0.0311	0.0308	0.0301	0.0341
ins		Noise	1005	940	954	820	902	945	851	783	932	870	944	983	1128	1138	1120	954
to 1	кЛ	CE	0.0322	0.0334	0.0329	0.0355	0.0339	0.0332	0.0348	0.0360	0.0336	0.0348	0.0333	0.0327	0.0304	0.0303	0.0301	0.0331
qu		Noise	623	823	712	620	901	841	859	798	917	869	779	864	1237	1269	1275	892
nN	חזת	CE	0.0406	0.0353	0.0378	0.0407	0.0341	0.0364	0.0347	0.0357	0.0336	0.0347	0.0365	0.0346	0.0293	0.0287	0.0281	0.0347

Table 3. Coefficient of error (CE) and noise values of the whole cervical spinal segments of ducks.

		1		,											,				<u> </u>		
	Mean	485	0.0448	555	0.0430	581	0.0424	660	0.0397	588	0.0419	501	0.0451	554	0.0433	503	0.0454	447	0.0477	440	0.0482
	C15	572	0.0418	639	0.0398	425	0.0491	615	0.0413	642	0.0398	492	0.0451	762	0.0360	512	0.0450	458	0.0468	482	0.0465
	C14	564	0.0423	636	0.0400	438	0.0488	623	0.0409	638	0.0401	509	0.0445	758	0.0365	515	0.0447	467	0.0466	486	0.0460
	C13	522	0.0440	635	0.0401	689	0.0390	724	0.0376	544	0.0448	558	0.0427	566	0.0424	612	0.0409	505	0.0449	497	0.0450
	C12	514	0.0444	576	0.0422	637	0.0403	759	0.0370	605	0.0412	490	0.0457	540	0.0436	565	0.0426	496	0.0452	417	0.0498
	C11	484	0.0459	465	0.0468	654	0.0397	644	0.0396	655	0.0394	571	0.0424	542	0.0433	425	0.0496	455	0.0476	429	0.0487
	C10	485	0.0457	546	0.0437	565	0.0423	642	0.0403	649	0.0397	517	0.0445	560	0.0429	416	0.0494	422	0.0491	412	0.0497
	60	528	0.0438	577	0.0421	570	0.0422	569	0.0429	625	0.0404	489	0.0455	518	0.0453	459	0.0471	434	0.0482	438	0.0480
	C8	412	0.0499	566	0.0426	532	0.0438	636	0.0404	531	0.0438	428	0.0488	592	0.0415	561	0.0425	407	0.0498	410	0.0495
	C7	429	0.0484	515	0.0443	578	0.0421	687	0.0388	495	0.0453	459	0.0468	515	0.0443	449	0.0475	425	0.0488	439	0.0479
	C6	620	0.0405	586	0.0417	574	0.0425	679	0.0390	498	0.0451	484	0.0458	473	0.0469	419	0.0499	471	0.0463	443	0.0478
	C5	657	0.0396	460	0.0470	570	0.0421	652	0.0395	557	0.0427	559	0.0430	460	0.0472	433	0.0481	431	0.0485	448	0.0475
	C4	497	0.0453	543	0.0432	602	0.0411	703	0.0387	604	0.0412	452	0.0472	497	0.0452	524	0.0443	416	0.0492	409	0.0498
nt	C3	425	0.0491	576	0.0421	509	0.0452	658	0.0395	581	0.0417	458	0.0472	553	0.0429	523	0.0441	440	0.0478	412	0.0497
of segme.	C2	720	0.0464	522	0.0443	686	0.0387	642	0.0400	590	0.0418	551	0.0429	494	0.0455	565	0.0426	448	0.0476	467	0.0466
Number	C1	490	0.0455	489	0.0456	684	0.0388	673	0.0395	601	0.0412	501	0.0451	483	0.0461	565	0.0424	431	0.0484	415	0.0499
		Voise	CE	Voise	CE	Voise	CE	Voise	Ë	Voise	CE	Voise	CE	Voise	Ë	Voise	CE	Voise	Ë	Voise	JE JE
			5	2		2	<u>ר</u>				n n	2	5		h h	~	<u>ເ</u>		<u>кл</u>		
				1													lem	iins	fo 1	əqui	nN

Table 4. Coefficient of error (CE) and noise values of white matter of the cervical spinal segments of ducks.

607

ÇAKMAK et al. / Turk J Vet Anim Sci

Number of segment Number of segment C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean Noise 490 533 530 539 60405 0.0420 0.0491 0.0455 0.0417 0.0435 0.0417 0.0435 0.0417 0.0435 0.0410 0.0435 0.0415 0.0435 0.0415 0.0435 0.0410 0.0455 0.0410 0.0455 0.0416 0.0416 0.0415 0.0322 0.0410 0.0455 0.0411 0.0455 0.0412 0.0435 0.0410 0.0455 0.0410 0.0455 0.0412 0.0435 0.0412 0.0435 0.0412 0.0435 0.0412 0.0435 0.0412 0.0435 0.0412 0.0435 0.0415 0.0412 0.0435 0.0415 0.0415 0.0415 0.0415 0.0412 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415 0.0415			2	I	2	70	Ę	с <u>п</u>	Ž	D4	Ļ	с <u>п</u>	2	5	Ľ	1	ç	lsm	iins 5	to 1:	- - - -	
Number of segment Number of segment C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mem 400 583 529 5041 0.0440 0.0443 0.0431 0.0435 0.0440 0.0435 0.0432 0.0431 0.0435 0.0441 0.0435 0.0441 0.0435 0.0441 0.0435 0.0442 0.0435 0.0442 0.0435 0.0442 0.0435 0.0442 0.0435 0.0442 0.0435 0.0442 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0435 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0445 0.0455 0.0455 0.0445			Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	CE	Noise	ц С
of segment C2 C4 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C6 C5 C14 C	Number	C1	490	0.0365	601	0.0410	720	0.0376	1280	0.0292	694	0.0381	604	0.0414	627	0.0400	572	0.0421	589	0.0418	502	0 0440
nt C4 C5 C5 C5 C5 C14 C14 C15 Mean 529 800 433 434 482 440 683 586 537 618 1023 755 763 562 558 434 402 01435 0.0448 0.0438 0.0449 0.0447 0.0446 0.0446 0.0435 0.0438 0.0447 0.0435 0.0449 0.0447 0.0435 0.0449 0.0447 0.0435 0.0444 0.0445 0.0446 0.0445 0.0435 0.0442 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0445 0.0455 0.0445 0.0445 0.0455 0.0445 0.0455 0.0455 0.0445 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.0455 0.	of segme	C2	583	0.0420	563	0.0425	578	0.0420	485	0.0458	596	0.0413	552	0.0430	601	0.0412	563	0.0426	508	0.0448	521	0 0442
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean 800<	nt	C3	529	0.0440	558	0.0426	486	0.0458	431	0.0486	614	0.0410	501	0.0451	535	0.0439	481	0.0459	448	0.0475	428	0.0486
C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean 433 434 482 440 683 586 537 618 1023 755 753 562 0.0485 0.0458 0.0458 0.0458 0.0478 0.0389 0.0417 0.0436 0.0321 0.0370 0.0392 0.0425 423 411 456 411 459 513 513 415 698 617 625 514 0.0497 0.0496 0.0476 0.0446 0.0446 0.0445 0.0435 0.0436 0.0455 0.0497 0.04987 0.0498 0.0444 0.0445 0.0445 0.0445 0.0456 0.0455 551 430 431 437 454 504 513 838 933 569 0.0448 0.0448 0.0445 0.0445 0.0445 0.0456 0.0455 0.0456		C4	800	0.0463	434	0.0484	467	0.0467	434	0.0481	496	0.0452	480	0.0459	473	0.0463	523	0.0440	430	0.0486	601	0.0413
C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean 434 482 440 683 586 537 618 1023 755 763 562 0.0485 0.0458 0.0478 0.0389 0.0417 0.0436 0.0320 0.03292 0.0425 513 555 763 562 0.0485 0.0456 0.0476 0.0446 0.0445 0.0497 0.03292 0.0452 0.0452 0.0496 0.0476 0.0446 0.0445 0.0445 0.0435 0.0445 0.0455 0.0456 0.0455 0.0496 0.0476 0.0444 0.0455 0.0445 0.0445 0.0455 0.0455 0.0491 0.0499 0.0482 0.0445 0.0445 0.0445 0.0456 0.0455 0.0445 0.0445 0.0445 0.0445 0.0445 0.0456 0.0456 0.0445 0.0435 0.0445 0.0445 0.045		C5	433	0.0484	423	0.0497	484	0.0457	551	0.0428	502	0.0449	480	0.0460	503	0.0449	485	0.0459	450	0.0474	538	0.0434
C7 C8 C9 C10 C11 C12 C13 C14 C15 Mean 482 440 683 586 537 618 1023 755 763 562 0.0458 0.0478 0.0389 0.0417 0.0405 0.0320 0.0425 513 513 513 513 556 513 562 467 411 459 513 513 415 698 617 625 514 426 451 513 490 513 590 671 438 420 426 451 513 490 513 590 671 438 923 569 0.0491 0.0476 0.0446 0.0445 0.0435 0.0435 0.0435 0.0435 0.0491 0.0412 0.0413 0.0415 0.0391 0.0416 0.0455 604 604 6043 6043 0.0315 0.0315 0.0435 0.0435 <td></td> <td>C6</td> <td>434</td> <td>0.0485</td> <td>413</td> <td>0.0494</td> <td>411</td> <td>0.0496</td> <td>430</td> <td>0.0487</td> <td>496</td> <td>0.0452</td> <td>453</td> <td>0.0474</td> <td>479</td> <td>0.0463</td> <td>429</td> <td>0.0486</td> <td>463</td> <td>0.0467</td> <td>599</td> <td>0.0412</td>		C6	434	0.0485	413	0.0494	411	0.0496	430	0.0487	496	0.0452	453	0.0474	479	0.0463	429	0.0486	463	0.0467	599	0.0412
C8 C9 C10 C11 C12 C13 C14 C15 Mean 440 683 586 537 618 1023 755 763 562 0.0478 0.0389 0.0417 0.0436 0.0405 0.0332 0.0452 6143 411 459 513 513 415 698 617 625 514 0.0476 0.04446 0.04456 0.0435 0.0392 0.0452 0.0452 0.04498 0.04444 0.0445 0.04451 0.0435 0.0438 0.0456 0.0455 0.0449 0.04444 0.0457 0.0445 0.0445 0.0445 0.0445 0.0445 0.04445 0.0445 0.0445 0.0445 0.0445 0.0455 0.0445 0.0443 0.0445 0.0445 0.0445 0.0456 0.0456 112 513 838 923 569 0.0456 0.0456 0.0456 0.0445 0.04		C7	482	0.0458	467	0.0467	426	0.0486	424	0.0491	572	0.0423	451	0.0475	437	0.0484	420	0.0492	439	0.0479	519	0 0447
C9 C10 C11 C12 C13 C14 C15 Mean 683 586 537 618 1023 755 763 562 0.0389 0.0417 0.0436 0.0405 0.0321 0.0425 0.0425 459 513 513 415 698 617 625 514 0.0470 0.0446 0.0497 0.0382 0.0410 0.0452 0.0452 513 490 513 590 671 438 420 475 513 490 513 590 671 438 420 475 513 490 513 590 671 438 420 475 513 490 513 504 0.0445 0.0445 0.0456 0.0456 6043 0.0444 0.0445 0.0445 0.0445 0.0445 0.0446 532 573 589 0.0445 0.0445 0.0456 0.0446<		C8	440	0.0478	411	0.0498	451	0.0476	412	0.0499	514	0.0445	401	0.0501	504	0.0449	484	0.0459	488	0.0456	571	0.0422
C10 C11 C12 C13 C14 C15 Mean 586 537 618 1023 755 763 562 513 513 415 698 617 625 514 0.0417 0.0436 0.0405 0.0321 0.0392 0.0422 513 513 415 698 617 625 514 0.0446 0.0446 0.0435 0.03321 0.0426 0.0452 513 513 590 671 438 420 475 490 513 590 671 438 420 475 613 672 581 1082 10.0347 0.0453 0.0453 0.0482 0.04416 0.04418 0.0345 0.0445 0.0445 613 672 581 1082 1115 645 0.04426 0.0432 0.04418 0.0345 0.0446 613 672 581 1082<		C9	683	0.0389	459	0.0470	513	0.0444	413	0.0498	540	0.0433	532	0.0440	465	0.0446	458	0.0471	516	0.0442	608	0 0400
CI11 C12 C13 C14 C15 Mean 537 618 1023 755 763 562 513 415 698 617 625 514 0.0436 0.0405 0.0321 0.0392 0.0426 513 415 698 617 625 514 0.0445 0.0382 0.0410 0.0452 0.0452 513 590 671 438 420 475 0.0445 0.0382 0.0410 0.0453 0.0455 513 590 671 438 420 475 0.0445 0.0393 0.0445 0.0347 0.0455 672 581 1082 1115 645 672 581 1082 1115 645 672 583 923 1325 628 673 597 500 450 504 672 581 1082 1115 645 <td></td> <td>C10</td> <td>586</td> <td>0.0417</td> <td>513</td> <td>0.0446</td> <td>490</td> <td>0.0457</td> <td>437</td> <td>0.0482</td> <td>613</td> <td>0.0406</td> <td>573</td> <td>0.0422</td> <td>456</td> <td>0.0470</td> <td>477</td> <td>0.0462</td> <td>488</td> <td>0.0457</td> <td>591</td> <td>0.0415</td>		C10	586	0.0417	513	0.0446	490	0.0457	437	0.0482	613	0.0406	573	0.0422	456	0.0470	477	0.0462	488	0.0457	591	0.0415
CI2 C13 C14 C15 Mean 618 1023 755 763 562 0.0405 0.0321 0.0370 0.0392 0.0422 1 0.0405 0.0321 0.0370 0.0426 0.0422 415 698 617 625 514 0.0452 590 671 438 420 475 0.0435 0.0382 0.0410 0.0453 0.0453 504 513 838 923 569 5044 513 838 923 569 0.0435 0.0347 0.0445 0.0445 587 581 1082 1115 645 587 581 1082 1115 645 510 0.0445 0.0445 0.0446 579 0.0445 0.0445 0.0446 521 0.0426 0.0445 0.0446 579 566 1303 1325 628		C11	537	0.0436	513	0.0446	513	0.0445	454	0.0470	672	0.0391	573	0.0422	553	0.0430	426	0.0498	453	0.0473	732	0.0370
Cl3 Cl4 Cl5 Mean 1023 755 763 562 0.0321 0.0370 0.0392 0.0422 698 617 625 514 0.03321 0.03102 0.0452 674 671 438 420 475 0.0382 0.0410 0.0426 0.0452 671 438 420 475 0.0382 0.04145 0.0445 0.0445 513 838 923 569 0.0445 0.0354 0.0347 0.0445 0.0445 0.0354 0.0445 645 581 1082 1115 645 581 1082 1115 645 0.0448 0.0450 0.0446 566 566 1303 1325 628 0.0380 0.04450 0.0446 566 566 1303 13255 628 616 788 821 521 <td></td> <td>C12</td> <td>618</td> <td>0.0405</td> <td>415</td> <td>0.0497</td> <td>590</td> <td>0.0435</td> <td>504</td> <td>0.0451</td> <td>587</td> <td>0.0420</td> <td>528</td> <td>0.0439</td> <td>597</td> <td>0.0412</td> <td>654</td> <td>0.0398</td> <td>486</td> <td>0.0458</td> <td>605</td> <td>0.0424</td>		C12	618	0.0405	415	0.0497	590	0.0435	504	0.0451	587	0.0420	528	0.0439	597	0.0412	654	0.0398	486	0.0458	605	0.0424
C14 C15 Mean 755 763 562 0.0370 0.0392 0.0422 0.0410 0.0426 0.0452 617 625 514 0.0410 0.0426 0.0452 617 625 514 0.0410 0.0426 0.0452 617 625 514 0.0410 0.0426 0.0452 838 923 569 0.0354 0.0347 0.0445 0.0354 0.0347 0.0446 1082 1115 645 0.0315 0.0309 0.0408 0.0315 0.0309 0.0446 1303 1325 628 0.0450 0.0440 0.0440 713 13035 0.0440 713 13035 0.0440 607 713 510 0.0392 0.0392 0.0450 1339 1412 725 0.00450		C13	1023	0.0321	698	0.0382	671	0.0393	513	0.0445	581	0.0418	716	0.0380	566	0.0425	616	0.0412	579	0.0419	1302	0 0005
C15 Mean 763 562 763 562 0.0392 0.0422 625 514 0.0426 0.0452 625 514 0.0432 60452 625 514 0.04456 0.0452 625 514 0.04456 0.04453 923 569 923 569 0.0347 0.04453 1115 645 0.0347 0.04466 1325 628 0.0472 0.04406 1325 628 0.0355 0.04406 13325 628 0.03355 0.04400 713 510 713 510 0.0352 0.0450 1412 725		C14	755	0.0370	617	0.0410	438	0.0484	838	0.0354	1082	0.0315	500	0.0450	1303	0.0282	788	0.0363	607	0.0409	1339	0.0281
Mean 562 562 0.0422 514 0.0452 475 0.0453 569 0.0445 645 645 645 645 645 645 645 645 645		C15	763	0.0392	625	0.0426	420	0.0498	923	0.0347	1115	0.0309	450	0.0472	1325	0.0271	821	0.0355	713	0.0392	1412	0.077
		Mean	562	0.0422	514	0.0452	475	0.0453	569	0.0445	645	0.0408	520	0.0446	628	0.0420	521	0.0440	510	0.0450	725	0 0398

Table 5. Coefficient of error (CE) and noise values of grey matter of the cervical spinal segments of ducks.

ÇAKMAK et al. / Turk J Vet Anim Sci

other segments was significant. When the volume of the white matter in the cervical segments of the ducks was examined statistically, no difference was found between the segments. When the volume of the grey matter in the cervical segments of the ducks was evaluated statistically, there was no difference between segments C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, and C12. The difference between the other segments and these segments was significant. The difference between segments C1 and C13 and all of the other segments was significant. While there was no difference between segments C14 and C15, the difference between these segments and the other segments was significant. No difference was determined between the cervical segments of the ducks in terms of GM/WM, WM/ SC, and GM/SC volume ratios (Table 6).

4. Discussion

It has been reported that the number of cervical vertebrae is 17 in goose, 14 in chicken, 12 in pigeon, and 14 in duck (3,18,19). Cakmak et al. (11) stated in their study that the number of cervical vertebrae in quails was 12. The number of cervical vertebrae was determined to be 14 in duck in the present study. A study conducted on the spinal cords of duck, chicken, and pigeon revealed that the number of cervical spinal segments was 15 in chicken and 13 in pigeon and duck (20). A stereological study on the cervical spinal segments was 13 (11). In the present study conducted on the cervical spinal segments of ducks, it was determined that the number of segments was 15. In one study, the spinal cord was segmented along with the vertebral column. The vertebrae were then decalcified (21). In the study conducted by Bolat (22) on Leghorn chicken it was reported that decalcification could be applied to the spinal cord as a whole without segmenting before decalcification. In the present study, the spinal cord was uncovered after the arcus vertebrae of the vertebral column in the spinal cord were removed. The vertebral column was used as a guide to identify the cervical segments of the spinal cord. The cervical segments were also obtained by dissection without using decalcification in the present study.

A study conducted on the cervical segments of the duck and the chicken suggested that the area value of segment C4 was larger compared to the other segments, and the white matter/grey matter ratio of segment C1 was lower than area ratio values of the other segments (20). In the present study, the highest volume value of the cervical segment in duck belonged to segment C15. This volume value obtained in the present study was not the same as the finding of segment C4 having the maximum area in the study by Hazıroğlu et al. (20), conducted on area values of cervical segments in duck.

In the study conducted by Bolat (22) on poultry, it was stated that the cervical enlargement was formed by segments C13, C14, C15, T1, and T2. A study conducted on the cervical segments of quails reported that segments C10, C11, C12, and C13 were involved in the formation of the cervical enlargement (11). Hazıroğlu et al. (20) stated in their study that the cervical enlargement was formed by

	Duck cer. SC volume	Duck cer. WM volume	Duck cer. GM volume	Duck cer. GM/WM ratio	Duck cer. WM/SC ratio	Duck cer. GM/SC ratio
C1	3.735 ± 0.391^{abc}	1.043 ± 0.161	$0.426 \pm 0.043^{\mathrm{b}}$	0.481 ± 0.066	0.281 ± 0.032	0.119 ± 0.011
C2	3.534 ± 0.282^{abc}	1.055 ± 0.164	$0.340 \pm 0.007^{\circ}$	0.395 ± 0.054	0.290 ± 0.030	0.103 ± 0.010
C3	3.381 ± 0.224^{bc}	0.989 ± 0.147	$0.306 \pm 0.012^{\circ}$	0.388 ± 0.037	0.291 ± 0.033	0.094 ± 0.008
C4	$3.340 \pm 0.245^{\circ}$	1.003 ± 0.156	$0.295 \pm 0.010^{\circ}$	0.352 ± 0.045	0.291 ± 0.028	0.094 ± 0.010
C5	3.321 ± 0.149°	1.193 ± 0.166	$0.297 \pm 0.008^{\circ}$	0.301 ± 0.044	0.353 ± 0.042	0.090 ± 0.004
C6	3.318 ± 0.139°	1.095 ± 0.162	$0.285 \pm 0.011^{\circ}$	0.317 ± 0.048	0.324 ± 0.041	0.086 ± 0.005
C7	$2.959 \pm 0.176^{\circ}$	0.915 ± 0.138	$0.281 \pm 0.010^{\circ}$	0.358 ± 0.039	0.308 ± 0.036	0.100 ± 0.009
C8	$3.126 \pm 0.227^{\circ}$	1.112 ± 0.165	$0.286 \pm 0.011^{\circ}$	0.313 ± 0.045	0.362 ± 0.046	0.097 ± 0.010
С9	3.266 ± 0.163°	1.080 ± 0.170	$0.317 \pm 0.015^{\circ}$	0.374 ± 0.063	0.323 ± 0.042	0.100 ± 0.010
C10	3.301 ± 0.212 ^c	1.176 ± 0.173	$0.319 \pm 0.012^{\circ}$	0.342 ± 0.056	0.347 ± 0.041	0.101 ± 0.009
C11	3.409 ± 0.286^{bc}	0.965 ± 0.154	$0.332 \pm 0.019^{\circ}$	0.416 ± 0.061	0.280 ± 0.030	0.103 ± 0.010
C12	3.701 ± 0.260^{abc}	1.241 ± 0.161	$0.338 \pm 0.014^{\circ}$	0.339 ± 0.059	0.335 ± 0.040	0.096 ± 0.010
C13	4.139 ± 0.242^{ab}	1.172 ± 0.177	0.444 ± 0.048^{ab}	0.726 ± 0.359	0.297 ± 0.052	0.115 ± 0.020
C14	4.218 ± 0.317^{a}	0.995 ± 0.176	0.512 ± 0.060^{a}	0.911 ± 0.410	0.241 ± 0.045	0.120 ± 0.010
C15	4.224 ± 0.315^{a}	0.991 ± 0.173	0.513 ± 0.060^{a}	0.941 ± 0.400	0.240 ± 0.043	0.120 ± 0.010
P-value	0.018	0.982	0.000	0.222	0.722	0.459

Table 6. Data analysis.

segments C13, C14, C15, T1, and T2 in chicken; by segments C12, C13, C14, C15, T1, and T2 in duck; and by segments C11, C12, C13, T1, and T2 in pigeon. In the present study, it was determined that segments C12, C13, C14, and C15 were involved in the cervical enlargement. The segments involved in formation of the cervical enlargement in the study conducted by Hazıroğlu et al. (20) on the cervical segments of duck were compatible with the segments involved in the cervical enlargement study.

Based on the results obtained from the present study, the whole volume ratios were high in segments C12, C13, C14, and C15 among the cervical segments of the ducks, which suggested that these segments were involved in the formation of the cervical enlargement area in duck.

Consequently, the whole segment, the grey matter, and the white matter differed between segments in terms of

References

- Özer A. Veteriner Özel Histoloji. 1st ed. Ankara, Turkey: Medisan Yayınevi; 2008 (in Turkish).
- Junqueria LC, Carneiro J, Kelley RO. Temel Histoloji. 8th ed. İstanbul, Turkey: Barış Kitapçılık; 1998 (in Turkish).
- Dursun N. Evcil Kuşların Anatomisi. Ankara, Turkey: Medisan Yayınevi; 2002.
- 4. Dursun N. Veteriner Anatomi III. Ankara, Turkey: Medisan Yayınevi; 2000 (in Turkish).
- Sterio DC. The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc 1984; 134: 127-136.
- Von Bartheld CS. Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases. Histol Histopathol 2002; 17: 639-648.
- Howard CV, Reed MG. Unbiased Stereology: Three-Dimensional Measurement in Microscopy. 1st ed. Oxford, UK: BIOS Scientific Publishers; 1998.
- Gundersen HJ, Jensen EB. The efficiency of systematic sampling in stereology and its prediction. J Microsc 1987; 147: 229-263.
- Aslanbey D, Sağlam M, Gürkan M, Olcay B. Kanatlılarda ketalar ile genel anestezi. Ankara Uni Vet Fak 1987; 34: 288-299 (in Turkish).
- 10. Romeis B. Mikroskopische Technik. Munich, Germany: R. Oldenburg; 1948 (in German).
- Cakmak G, Soyguder Z, Ragbetli MC. A morphological and stereological study on cervical segment of spinal cord of quails. Anat Histol Embryol 2017; 46: 258-266.
- 12. Weibel ER. Stereological Methods. Vol 2: Theoretical Foundations. London, UK: Academic Press Inc.; 1980.
- Cruz-Orive LM, Weibel ER. Recent stereological methods for cell biology: a brief survey. Lung cellular and molecular physiology. Am J Physiol 1990; 258: 148-156.

volume values of the cervical spinal segments, and these differences also revealed statistical significance.

The present study highlighted that total volume, white matter volume, and grey matter volume in the cervical spinal segments in ducks could be calculated and revealed by using stereological methods. In the present study, the cervical segments involved in the formation of the cervical enlargement region were also determined.

The present study is presented as an example of morphological and stereological studies to be conducted in anatomy, pathology, and neurobiology.

Acknowledgment

The President of Scientific Research Projects of Van Yüzüncü Yıl University was the source of funding for this study. Project code: 2011-VF-B26/ ID: 838.

- Gundersen HJG, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A et al. Some new, simple, and efficient stereological methods and their use in pathological research and diagnosis. Acta Path Micro Im A 1988; 96: 379-394.
- Luna LG. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd. ed. New York, NY, USA: McGraw-Hill Book Company; 1968.
- Roberts N, Hogg D, Whitehouse GH, Dangerfield P. Quantitative analysis of diurnal variation in volume and water content of lumbar intervertebral discs. Clin Anat 1998; 11: 1-8.
- Howard CV, Reed MG. Unbiased Stereology: Three-Dimensional Measurement in Microscopy. 2nd ed. Milton, UK: Taylor & Francis; 2005.
- Nickel R, Schummer A, Seiferle I. The Anatomy of the Domestic Birds. 1st ed. Berlin, Germany: Verlag Paul Parey; 1977.
- Can M, Özdemir D, Özüdoğru Z. Çamurcun (*Anas crecca*) iskelet sistemi üzerinde üzerinde makro-anatomik çalışmalar. I. Skeleton axiale 2010; 24: 123-127 (article in Turkish with an English abstract).
- Hazıroğlu RM, Orhan İÖ, Yıldız D, Gültiken ME. Morphology of the spinal cord in the chicken, duck and pigeon. Turk J Vet Anim Sci 2001; 25: 913-920.
- Begum F, Zhu W, Namaka MP, Frost EE. A novel decalcification method for adult rodent bone for histological analysis of peripheral-central nervous system connections. J Neurosci Methods 2010; 187: 59-66.
- 22. Bolat D. Leghorn ırkı kanatlılarda medulla spinalis'in stereolojik metodlar ile incelenmesi. PhD. Selçuk University, Konya, Turkey, 2011 (in Turkish).