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1. Introduction
Although bull semen is frequently cryopreserved, 
there are many deleterious effects on frozen-thawed 
sperm [1], including decreases in motility, DNA and 
plasma membrane integrity, and sperm mitochondrial 
membrane potential, plus increased lipid peroxidation 
[2–4]. As semen extender substantially affects the 
quality of frozen-thawed sperm [5], there is a strong 
impetus to continue to improve extenders and freezing 
methods [6].

Due to their lipid composition and fatty acid ratios, 
sperm membranes are very sensitive to temperature 
changes during cooling and freezing [7], with much 
potential for oxidative stress and cell damage [8]. 
Various antioxidants, sugars, proteins, and enzymes [9–
11] have improved frozen-thawed sperm by increasing 
antioxidant capacity, thereby reducing sperm damage 
due to free radicals and oxidative stress [8]. For example, 
exogenous catalase (CAT) can confer protection from 
oxidative damage [12]; CAT supplementation improves 
the viability of bull [13], red deer [14], swine [15], dog 

[16], and rooster [10] sperm after chilling or freezing 
processes. Various carbohydrates, monosaccharides, 
and disaccharides had protective effects on frozen-
thawed sperm [17,18]. In that regard, the disaccharide 
trehalose (TRE) apparently potentiated activities of 
catalase, superoxide dismutase, and glutathione, thereby 
protecting sperm membranes from oxidative damage 
and lipid peroxidation [11]. In addition, cysteine (CYS) 
stimulates glutathione synthesis and decreased oxidative 
stress [19], improving bull sperm membrane integrity 
[9] and buck sperm motility [20].

The use of TRE, CYS, and CAT for protecting 
cryopreserved sperm has been tested with varying 
results [21–23]. However, a simultaneous comparison of 
these compounds, added alone and in combination to 
extender for bull semen cryopreservation, has apparently 
not been reported. Our objective was to evaluate the 
effects of adding TRE, CYS, and CAT, individually or 
in combinations, to a Tris-based semen extender and 
determine the effects on diluted, chilled-equilibrated, 
and frozen-thawed bull semen characteristics.
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2. Materials and methods
2.1. Chemicals 
Unless otherwise stated, all chemicals were purchased 
from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
2.2. Bulls
Semen was collected by artificial vagina from three 
Holstein bulls (1–3 years old) and pooled (30 ejaculates 
and six replicates). All activities involving bulls were 
reviewed and approved by the Burdur Mehmet Akif Ersoy 
University Animal Care Committee (Protocol 31/192). 
2.3. Semen processing 
All ejaculates meet minimum quality standards (mass 
activity ≥ +++3 [scale of 1 to 5]; volume ≥ 5 mL; sperm 
concentration ≥ 0.8 × 109 /mL; and initial motility ≥ 75%) 
[3]. Ejaculates were pooled and semen was extended in a 
Tris-based extender comprising 3.07 g Tris, 1.64 g citric 
acid, and 1.26 g fructose per 100 mL distilled water with 
7% glycerol and egg yolk 20% (v/v), to a final sperm 
concentration of 100 × 106/mL. 

Based on previous experiments [9,24–26], we used 50 
mM TRE, 1 mM CYS, and 400 µg CAT individually or in 
combinations. Pooled semen was divided into six equal 
portions and put into a Tris-based extender supplemented 
with no additive (control), TRE, CYS, CAT, TRE + CYS, or 
TRE + CYS + CAT. For all groups, semen was diluted and 
cooled from 37 to 4 °C over 2.5 h, and equilibrated semen 
was loaded in to 0.25-mL straws (20 × 106 spermatozoa/
straw) that were exposed to nitrogen liquid vapor (5 cm 
above liquid nitrogen) for 12 min before being plunged 
into liquid nitrogen (–196 °C). Straws were stored for at 
least 3 months and samples were analyzed after thawing in 
a water bath at 37 °C for 30 s. 
2.4. Sperm evaluation 
2.4.1. General
Motility evaluation was done soon after semen was collected 
and extended (fresh), after cooling and equilibration 
(equilibrated), and after freezing and thawing (postthaw), 
although assessment of the hypoosmotic swelling (HOS) 
test, sperm morphology, high mitochondrial membrane 
potential (HMMP), and plasma membrane and acrosomal 
integrity (PMAI) were done only for frozen-thawed sperm.
2.4.2. Motility
A wet mount was prepared by placing 1 drop (~5 µL) of 
diluted sample on a warmed slide and covering it with a 
cover slip. Total sperm motility was subjectively estimated 
using a phase-contrast microscope [400× magnification, 
Nikon Eclipse E600 (Tokyo, Japan)] at 37 °C. Motility 
estimates were done by viewing at least five fields for each 
sample and the mean was recorded.
2.4.3. Flow cytometry
Flow cytometry was done with a Cytoflex Flow Cytometer 
(Beckman Coulter, USA) with a 50-mW laser output (488-

nm laser beam) with emission filters of 610 ± 20, 585 ± 42, 
and 525 ± 40 nm. For each analysis, ~10 × 103 events were 
collected.
2.4.3.1. Plasma membrane and acrosome integrity
For thawed sperm, the evaluation of PMAI was done 
by multiparameter sperm analysis with fluorescein iso-
thiocyanate-conjugated peanut agglutinin (FITC/PNA)-
propidium iodide (PI) molecular probes. For this, one straw 
was thawed (37 °C for 30 s) and semen was extended to 5 
× 106 sperm (10 µL) in 496 µL of PBS. Then 5 µL of FITC/
PNA (L7381, 100 µg/mL) and 3 µL of PI (L7011, 2.99 mM) 
were added and incubated for 30 min in a water bath (37 
°C) in a dark area [27]. Thereafter, debris was gated out and 
PMAI analyses were performed with CytExpert 2.2 software 
(Beckman Coulter, USA) [28].
2.4.3.2. Mitochondrial membrane potential
For thawed sperm, HMMP was determined with 
5,5’,6,6’-tetrachloro-1,1’3,3’- tetramethylbenzimidazolyl-
carbocyanine iodide (JC-1)-PI molecular probes. For this, 
one straw was thawed (37 °C for 30 s) and extended to 5 
× 106 sperm (10 µL) in 487 µL of PBS. Then 10 µL of JC-1 
(T3198, 0.153 mM) and 3 µL of PI (L7011, 2.99 mM) were 
included and incubated for 30 min in a water bath (37 
°C in a dark area). After incubation, debris was gated out 
and analysis of HMMP was performed with CytExpert 2.2 
software (Beckman Coulter, USA) [28].
2.4.4. Membrane integrity (HOS test)
The HOS test was used to evaluate sperm membrane 
integrity. For this, 10 µL of semen was placed in 1 mL of 100 
mOsm buffer (1.35 g fructose, 0.735 g tri-sodium citrate/100 
mL distilled water) at 37 °C for 1 h. Then 5 µL was placed 
on a slide, cover-slipped, and evaluated with bright-field 
microscopy [400× magnification, Nikon Eclipse E600 
(Tokyo, Japan)]. At least 200 sperms were assessed and the 
percentage with curled and swollen tails was recorded [29]. 
2.4.5. Sperm morphology
Abnormal spermatozoon rate was determined by fixation 
liquid method. Spermatozoon were fixed with Hancock 
solution. At least 200 sperms per slide were examined under 
phase-contrast microscopy at 1000× magnification (Nikon 
Eclipse E600, Tokyo, Japan). Sperm abnormalities were 
defined as major or minor, as previously described [30,31].
2.5. Statistical analyses 
Data for sperm motility, PMAI, HMMP, HOS test, and major, 
minor, and major + minor sperm defects were analyzed to 
detect differences among groups. First, normality of data 
distribution was confirmed with a Shapiro–Wilk test; then 
data were analyzed by ANOVA, with a Tukey test used to 
locate differences. Independent statistical analyses were 
conducted for each end point for fresh, equilibrated, and 
postthaw sperm. Pearson correlations between HMMP and 
PMAI, motility, HOS tests, and sperm abnormalities were 
also calculated. 
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All data analyses were performed with SPSS 22.0 for 
Windows, with P < 0.05 considered significant. All data 
were reported as arithmetic mean ± standard error of the 
mean (SEM).

3. Results
There was no significant effect of group on motility of fresh 
sperm (Table 1). In chilled-equilibrated semen, motility 
was highest in the CAT and lowest in the control group 
(mean ± SEM, 75.7 ± 2.3% vs. 68.6 ± 1.4%, respectively). 
In postthaw semen, motility was lowest (P < 0.05) in 
CAT (27.1%), but not significantly different among the 
remaining five groups. For PMAI and HMMP, values were 
highest in TRE and TRE + CYS (no significant difference 
between these two groups for either end point) and were 
lowest (P < 0.05) in the control group (Table 2). There was 
a lower (P < 0.05) percentage of HOS test-positive sperm 
in the control and CAT groups compared to the other 
four groups (Table 3), whereas major, minor, and major 

+ minor defects were lowest (P < 0.05) in the TRE group. 
HMMP was positively correlated with PMAI (r = 0.66; 
P < 0.01) and HOS test (r = 0.342; P < 0.05) and negatively 
correlated with major + minor abnormalities (r = –0.349, 
P < 0.05; Table 4).

4. Discussion
Sperm function and the fertility of frozen-thawed semen 
can be decreased in a variety of ways, especially due to the 
actions of free radicals [32]. In the present study, bull sperm 
was cryopreserved with various antioxidant compounds 
(TRE, CYS, and CAT) individually or in combination. 
The addition of TRE or TRE + CYS to the extender was 
generally favorable with regards to PMAI, HMMP, HOS 
tests, and sperm morphology. Previous studies showed that 
TRE had positive effects on sperm morphology during the 
freezing process and this was similar to our findings [29].

Based on motility, there was no evidence that any of the 
extenders had deleterious effects on fresh semen. Addition 

Table 1. Mean (±SEM) motility (%) of fresh, chilled/equilibrated, and frozen-thawed bull sperm in various extenders.

Motility (%) Control TRE CYS CAT TRE + CYS TRE + CYS + CAT

Fresh 80.0 ± 1.5 77.8 ± 1.8 78.6 ± 2.1 80.7 ± 1.7 82.1 ± 1.5 82.8 ± 1.8
Equilibrated 68.6 ± 1.4a 70.1 ± 1.3a 71.4 ± 1.4ab 75.7 ± 2.3b 72.1 ± 1.0ab 72.8 ± 1.5ab

Postthaw 47.1 ± 1.5a 52.8 ± 2.1a 54.3 ± 2.5a 27.1 ± 3.8b 52.8 ± 1.0a 48.6 ± 1.4a

TRE (50 mM); CYS (1 mM); CAT (400 µg); TRE + CYS (50 mM + 1 mM); TRE + CYS + CAT (50 mM + 1 mM + 400 µg).
a, b Within a row, means without a common superscript significantly differ (P < 0.05).

Table 2. Mean (±SEM) PMAI and HMMP of frozen-thawed bull sperm. 

End point (%) Control TRE CYS CAT TRE + CYS TRE + CYS + CAT

PMAI 43.4 ± 0.5a 51.1 ± 1.1b 45.8 ± 0.6a 41.0 ± 3.7a 54.6 ± 1.1b 34.6 ± 1.1c

HMMP 27.8 ± 0.8a 48.7 ± 1.1b 39.2 ± 2.0c 33.0 ± 1.2d 47.4 ± 1.9b 31.1 ± 0.4a,c

TRE (50 mM); CYS (1 mM); CAT (400 µg); TRE + CYS (50 mM + 1 mM); TRE + CYS + CAT (50 mM + 1 mM + 400 µg).
a–d Within a row, means without a common superscript significantly differ (P < 0.05).

Table 3. Mean (±SEM) percentages of sperm positive in HOS test or with major or minor morphological abnormalities in frozen-
thawed bull sperm. 

End point (%) Control TRE CYS CAT TRE + CYS TRE + CYS + CAT
HOS test 65.0 ± 2.2a 78.2 ± 1.1b 74.4 ± 2.0b 63.7 ± 2.2a 75.2 ± 1.0b 75.3 ± 0.7b

Major abnormalities 4.4 ± 0.3a 3.1 ± 0.3b 4.3 ± 0.4a 4.4 ± 0.4a 4.0 ± 0.5ab 3.8 ± 0.3ab

Minor abnormalities 18.6 ± 1.3a 12.3 ± 0.5b 18.0 ± 1.1a 25.3 ± 1.9c 16.0 ± 0.8a 19.7 ± 1.0a

Major + minor abnormalities 23.0 ± 1.1a 15.4 ± 0.8b 22.4 ± 1.2a 29.7 ± 1.8c 20.0 ± 1.0a 23.6 ± 1.1a

HOS test; TRE (50 mM); CYS (1 mM); CAT (400 µg); TRE + CYS (50 mM + 1 mM); TRE + CYS + CAT (50 mM + 1 mM + 400 µg).
a–c Within a row, means without a common superscript significantly differ (P < 0.05).
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of 1 mM CYS to semen extender resulted in the highest 
postthaw total motility, although it was only significantly 
greater than that of CAT (P < 0.05). CYS has a potential 
positive role on antioxidants that scavenge reactive oxygen 
species (ROS) by enhancing glutathione synthesis during 
cryopreservation [33,34]. 

Although addition of 400 µg/mL CAT to the sperm 
medium resulted in the highest motility for chilled sperm, 
it also resulted in the significantly lowest motility after 
the freezing process. Compared to other groups, CAT 
decreased postthaw motility, as well as plasma membrane 
and acrosome integrity and morphological integrity, 
consistent with previous studies [24,35]. Similarly, 200 or 
400 µg CAT also decreased postthawed sperm motility 
in ram semen [24]. Although 50–100 µg CAT failed to 
improve motility in fresh extended or cooled monkey 
semen [36], conversely, 400 µg CAT had positive effects on 
the postthaw motility of bull [22,37], goat [23], boar [38], 
and ram [39] sperm.

Despite ample evidence that excessively high ROS 
concentrations are deleterious, physiological ROS 
concentrations have critical roles in sperm physiology, 
acrosome reaction, capacitation, hyperactivation, and 
signaling to ensure fertilization [40]. Strategic use of 
antioxidants can mitigate excessive ROS concentrations 
and enhance sperm quality and function, whereas excessive 
antioxidant activity could be very detrimental. Although it 
was suggested that since CAT is an endogenous product, it 
does not need to be supplemented [36], perhaps apparent 
differences among studies are related to the species and/or 
concentrations of CAT used.

In the present study, PMAI was highest with 
the combination of TRE + CYS, although it was not 
significantly different than that of TRE. PMAI is important 
for fertilization, as essential enzymes are stored in the 
acrosome. Similar to our study, the addition of TRE to 
the extender of semen from red deer [41] and goats [42] 
improved postthaw PMAI. Furthermore, TRE significantly 
increased the viability and acrosome integrity of ram sperm 
[21] and promoted the integrity of mouse sperm [43].

HMMP was highest in the TRE group (but not 
significantly different from the TRE + CYS group) and lowest 
in the control group. Mitochondria are the main source of 
ROS, with actions of TRE to reduce oxidative stress occurring 
in the mitochondria [44]. Lee et al. [45] accounted for why 
TRE, despite having similar cryoprotective effects compared 
to other sugars, resulted in a higher rate of sperm with high 
membrane fluidity. Sperm motility is mostly dependent 
on mitochondria, located in the midpiece and producing 
energy essential for propagation and generation of flagellar 
waves [46]. Sperm membrane integrity and viability are 
critical aspects of sperm quality and function, including 
maintenance of homeostasis and the ability to move, 
interact with the environment, and achieve fertilization. 
A motile spermatozoon should be considered viable and 
viable spermatozoa must have an intact plasma membrane, 
as the latter is essential for the sperm’s interactions with 
the environment and other cells [47]. Consequently, there 
is an association between plasma membrane integrity and 
HMMP [1]. Dense fibrils in the mitochondrial axoneme 
produce intracellular ATP [8], required for sperm motility 
[48]. Furthermore, mitochondrial membrane potential 
evaluation not only reflects mitochondrial function but is 
also evidence of early apoptosis, as impaired mitochondrial 
function may lead to increased apoptosis [49]. In the 
present study, HMMP was positively correlated with PMAI 
(r = 0.66, P < 0.01) and negatively correlated with the HOS 
test (r = –0.342, P < 0.05) and total abnormality (r = –0.349, 
P < 0.05). This finding was similar to results for frozen-
thawed human [50] and bovine [2] sperm.

In conclusion, the addition of 50 mM TRE alone or 
in combination with 1 mM CYS to Tris-based freezing 
medium improved the postthaw quality of bull semen. 
Further studies with a wider range of concentrations, 
combinations of both compounds, and effects on fertility of 
frozen-thawed semen are warranted.

Table 4. Correlations between HMMP and various end points in 
frozen-thawed bull sperm. 

End point Correlation coefficient P-value

PMAI 0.66 <0.01
Total motility 0.26 0.125
HOS test  0.342 <0.05
Major abnormalities –0.217 0.204
Minor abnormalities –0.326 0.053
Major + minor abnormalities –0.349 <0.05
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