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1. Introduction 
Methane released during ruminal fermentation plays 
an important role in global warming [1,2]. One of the 
aims in ruminant nutrition is to reduce the release 
of methane from the rumen, without adverse effects 
on digestibility, animal health, and productivity [3]. 
Moreover, improvements of rumen microbial biomass 
and the antioxidant status of animals are attractive targets 
in feeding management. This requires the best supply 
of nutrients and supplementary minerals in diets. Zinc 
is a vital trace mineral needed for animal productivity, 
immunity, rumen metabolism, and the antioxidant 
system [3–5]. Zn insufficiency can cause the weakness 
of the antioxidant system [6–8] and using high levels of 
dietary trace minerals, such as Zn, can improve animal 
health and performance [9–12]. 

Diets are usually supplemented with Zn as inorganic 
(such as ZnO and ZnSO4) or organic (such as Zn-amino 
acid complexes) sources. An organic mineral source 
offers further elements to animals due to its superior 
bioavailability [5,13]. At present, the usage of ZnO 
nanoparticles (nano-ZnO), with sizes of 1 to 100 nm, has 
increased in various fields such as mineral nutrition in 
livestock [4,7,14]. Nano sources of trace minerals have 

high bioavailability because of interesting properties 
such as the nano scale size, rapid and specific movement, 
higher area surface to volume proportion, surface 
activity, catalytic effectiveness, and absorption percentage 
[12,15,16]. Some researchers assessed the toxic impacts of 
Zn nanoparticles in animals [17–19]. However, there are 
studies supporting the beneficial effects of nanoparticles 
on animal performance, feed efficiency, and health as well 
as reduction of environmental pollution, due to the great 
bioavailability [15,16,20,21]. Wang et al. [12] mentioned 
that long-term oral Zn sulfate treatment was more toxic 
for animals than nano-ZnO. As reported by Singh et al. 
[22], feeding preruminant lambs with nano-ZnO instead 
of ZnO increased the Zn availability without causing 
toxicity. Nano-ZnO can improve villus height, crypt 
depth, and villus surface area in the gastrointestinal tract 
[12,14]. Sarker et al. [1] reported that supplementation 
with high levels of nano-ZnO (i.e. 500 and 1000 μg/g) 
decreased in vitro methane concentration compared 
with a control treatment (no Zn supplementation). 
Nanoparticles could be poisonous to certain microbes 
generating methane in anaerobic digestion [14,23]. Still, 
further studies are necessary to realize the possible helpful 
or harmful effects of nano-ZnO on animals [1,7,21].
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Based on previous studies, it was hypothesized that 
nano-ZnO could be absorbed by rumen microorganisms 
differently from ZnO due to the small size and high surface 
area, and they may change the rumen fermentation. 
Therefore, the aim of this study was to investigate the effect 
of increasing dietary levels of Zn as nano-ZnO, compared 
with ZnO, on in vitro ruminal fermentation, methane 
release, total antioxidant capacity (TAC), and microbial 
biomass production (MBP).

2. Materials and methods
2.1. Experimental treatments
This study was conducted at Tarbiat Modares University 
(Tehran, Iran). A control diet free of supplementary Zn 
was formulated according to the nutrient requirements of 
growing sheep [24], with an exception for Zn level. The crude 
protein (CP) and metabolizable energy (ME) requirements 
of 8-month-old growing sheep (late maturing) with 30 kg 
of body weight, an average daily gain of 400 g/day, and a 
daily DM intake of 1.5 kg are 10.63 MJ and 133 g per kg 
diet DM (i.e. 3.81 MJ and 200 g per day), respectively. The 
Zn concentration of the control diet was 25.18 mg/kg DM. 
In the other treatments, the diet was supplemented with 
20, 40, or 60 mg of Zn as ZnO or 20, 40, or 60 mg of Zn as 
nano-ZnO (>99%, 10–30 nm; US Research Nanomaterials, 
Inc., Houston, TX, USA) per kg DM, i.e. 7 treatments. 
The chemical composition of the feedstuffs used in diets 
is shown in Table 1. Moreover, ingredients and chemical 
compositions of the experimental diets are shown in 
Tables 2 and 3, respectively. Ash, CP, ether extract, and 
neutral detergent fiber of diets were measured according 
to the standard methods (Nos. 924.05, 988.05, 920.3, and 
2002.04, respectively) of the AOAC [25]. Determinations 
of Zn and Ca were carried out using an atomic absorption 
spectrophotometer (AA-6200, Shimadzu, Japan) and P 
was measured by a spectrophotometric method [25].

2.2. In vitro 24-h gas production (GP) experiment
To assess the effect of treatments on in vitro ruminal 24-h 
GP and fermentation parameters, an in vitro 24-h GP 
experiment was conducted based on the method of Menke 
et al. [26]. The rumen liquid was obtained via rumen fistula 
from 3 adult sheep of 2 years old (body weight of 59.1 ± 
1.8 kg), 30 min before the morning feeding (at 06:30). The 
uniform rumen fluid sample was achieved from both the 
liquid and fiber phases. The Guide for the Care and Use 
of Agricultural Animals in Research and Teaching [27] 
was followed in this study and all protocols were approved 
(No. 9530381005; Date: 28.12.2017) by the Animal Science 
Group of Tarbiat Modares University (Tehran, Iran). A 
mixed diet containing alfalfa, soybean meal, barley grain, 
corn grain, salt, mineral premix, and vitamin premix (at a 
ratio of 60:5:18.5:15:0.5:0.5:0.5 on DM basis) was offered 
to the animals. The rumen liquid was sucked through 
three layers of cheese cloth into a warm flask (39 °C) filled 
with CO2.

The experimental diets (200 mg) were incubated in 
100-mL glass syringes with buffered rumen fluid (30 
mL; containing 1 volume of strained rumen fluid and 2 
volumes of anaerobic minerals buffer). Seven diets were 
incubated at 39 °C for a period of 24 h in 3 replicates with 2 
samples for each replicate, 2 different syringes per sample, 
and 2 separate runs in various weeks, as well as 3 syringes 
without diet (blank) at each run [28]. Moreover, standard 
hay (i.e. good quality alfalfa) was used, in triplicates, to 
control the quality of the rumen liquid [26].
2.2.1. In vitro GP and estimated parameters
The 24-h GP was measured and the amounts of OM 
digestibility (OMD) and ME were predicted via the 
following equations [26]:
OMD (%) = 14.88 + (0.889 × GP) + (0.45 × CP) + (0.651 × CA), 
ME (MJ/kg DM) = 2.20 + (0.136 × GP) + (0.057 × CP) + (0.0029 
× EE2). 

Table 1. Chemical composition (g/100 g DM or as stated) of the feedstuffs 
used to formulate the diets.

Item Alfalfa hay Barley grain Corn grain Soybean meal
Crude protein 14.04 10.17 9.11 43.35
NDF 43.61 23.13 14.39 14.22
Ether extract 2.53 1.80 4.01 2.20
Ash 8.79 3.11 2.88 6.21
Ca 1.30 0.15 0.20 0.55
P 0.22 0.37 0.30 0.62
Zn (mg/kg DM) 13.57 36.62 40.14 48.20
ME (MJ/kg DM) 8.53 12.68 13.23 13.86

NDF: Neutral detergent fiber, ME: metabolizable energy.
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In the above equations, OMD is OM digestibility, GP is 
24-h net gas produced (mL/200 mg diet DM), CP is crude 
protein (%), CA is ash (%), ME is metabolizable energy, 
and EE is ether extract (%).

To calculate the TDS, the gas volume of 12 syringes 
in each treatment (3 replicates × 2 samples × 2 runs) was 
recorded after 24 h of incubation. Then the entire contents 
of each syringe were centrifuged (at 20,000 × g for 30 min 
at 4 °C) and the supernatant was removed as described by 
Blümmel et al. [29]. The pellet contained in the centrifuge 
tubes was transferred into 500-mL beakers and was boiled 
with neutral detergent solution (NDS) for 1 h. Thereafter, 
No. 2 filter crucibles [30] and hot distilled water were used 

to separate and wash the undissolved matters, which were 
dried at 60 °C to reach a constant weight, and the amount 
of TDS (g/kg DM) was estimated by subtracting this value 
(i.e. the residue after NDS treatment) from the initial 
weight of the incubated diet (200 mg) [29]. The MBP for 
each treatment was calculated as MBP (mg/g sample DM) 
= TDS – (mL GP × 2.2). Additionally, the 24-h partitioning 
factor (PF; displaying fermentation effectiveness) for each 
diet was obtained as TDS (mg)/GP (mL) [29].
2.2.2. In vitro methane production
The methane produced via fermentation of diets containing 
different supplementary Zn sources was measured in a 
separate in vitro gas test according to Fievez et al. [31]. 

Table 2. Feed ingredients (g/100 g DM) of the diets containing different Zn sources.

Zn source Control ZnO Nano-ZnO
Added Zn 0 20 40 60 20 40 60
Alfalfa (14 %CP) 45.0 45.0 45.0 45.0 45.0 45.0 45.0
Barley grain 23.0 23.0 23.0 23.0 23.0 23.0 23.0
Corn grain 25.75 25.75 25.75 25.75 25.75 25.75 25.75
Soybean meal (44 %CP) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
NaCl 0.25 0.25 0.25 0.25 0.25 0.25 0.25
*Mineral premix 0.5 0.5 0.5 0.5 0.5 0.5 0.5
†Vitamin premix 0.5 0.5 0.5 0.5 0.5 0.5 0.5

* Mineral premix contained (per kg): 120 g of Ca, 30 g of P, 60 g of Mg, 4 mg of Se, 40 
mg of Co, 70 mg of Mn, 100 mg of I, and 30 mg of Cu. † Mineral premix contained (per 
kg): 500,000 IU of vitamin A, 100,000 IU of vitamin D3, and 8,000 IU of vitamin E.

Table 3. Chemical composition (g/100 g DM or as stated) of the diets containing 
different Zn sources.

Zn source Control ZnO Nano-ZnO
Added Zn 0 20 40 60 20 40 60
Crude protein 13.05 12.98 13.10 13.09 13.10 13.07 13.04
NDF 30.61 31.00 30.73 30.59 31.00 30.85 30.60
Ether extract 2.69 2.71 2.67 2.72 2.68 2.70 2.63
Ash 6.59 6.62 6.57 6.53 6.69 6.56 6.71
Ca 0.692 0.698 0.694 0.694 0.700 0.695 0.691
P 0.293 0.285 0.289 0.290 0.286 0.291 0.286
*Zn (mg/kg DM) 25.18 43.92 63.19 84.50 44.11 63.71 85.03
ME (MJ/kg DM) 10.86 10.86 10.86 10.86 10.86 10.86 10.86

NDF: Neutral detergent fiber, ME: metabolizable energy. 

* In the Zn-supplemented treatments, 20, 40, or 60 mg of Zn as ZnO or 20, 40, or 60 
mg of Zn as nano-ZnO was included per kg of diet DM. The chemical composition 
of all the diets was determined using the standard methods of the AOAC, except 
ME, which was calculated from each feed’s ME content.
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After measuring the 24-h GP, 4 mL of NaOH solution (10 
M) was injected into the syringe to absorb the produced 
CO2. The residual gas in the syringe was CH4. The methane 
volume was obtained from the shift in the plunger position 
as a result of the CO2 absorption by NaOH.
2.2.3. TAC
The effect of the Zn supplementation on in vitro ruminal 
TAC was determined using the ferric reducing antioxidant 
power (FRAP) test as recommended by Benzie and Strain 
[32]. This method was established based on the reduction 
of ferric-tripyridyltriazine (TPTZ) to the ferrous form by 
the antioxidants, which leads to a blue color detected at 
593 nm. Ferrous sulfate solution was used as the standard 
and the results were calculated as µmol Fe2+ formed per L 
of rumen liquor.
2.2.4. pH, VFA, ammonia, and protozoa
These parameters were evaluated in the fermentative 
contents of 12 syringes per diet (3 replicates × 2 samples × 
2 runs). The pH was detected using a Sartorius pH meter 
(Sartorius AG, Germany). The VFA concentrations were 
determined using the UNICAM 4600 gas chromatograph 
(SB Analytical, Cambridge, UK) with a capillary column 
(19095F-121; Agilent Technologies, Santa Clara, CA, 
USA) by the method of Galyean [33]. Ammonia-N was 
quantified by the phenol-hypochlorite method [33]. 
Finally, one volume of the syringe contents was mixed 
with one volume of 50% formalin. Thereafter, the protozoa 
numbers were enumerated using a hemocytometer 
(Neubauer Improved, Marienfeld, Germany) and a light 
microscope [34].
2.3. Kinetics of GP
In separate runs, the effect of treatments on GP kinetics 
was assessed using the 120-h in vitro GP experiment. 
The experiment was conducted based on the method of 
Menke et al. [26] (as described above) and the produced 

gas was recorded at 2, 4, 6, 8, 12, 24, 48, 72, 96, and 120 
h of incubation. The kinetic variables were predicted as 
y = B (1 − e−ct) [35]. In this exponential model, y, B, and 
c are the gas volume detected at time t, asymptotic value 
of produced gas (mL/200 mg diet DM), and first-order 
fractional rate constant of produced gas (/h), respectively.
2.4. Statistical analysis
In this study, the data were analyzed by PROC GLM of 
SAS (Version 9.1, SAS Institute, Cary, NC, USA) [36] 
using a split-plot in a completely randomized design 
(7 treatments × 3 replicates × 2 samples × 2 runs). The 
treatment was considered as main plot and the run as 
subplot. The experimental unit was the syringe and the 
treatment effect was considered fixed. The model was Yijkl 
= μ + Ti + eij + Rk + (TR)ik + eijk + eijkl. In this model, Yijkl, 
μ, Ti, eij, Rj, (TR)ik, eijk, and eijkl are the general observation, 
overall mean, treatment effect, treatment × replicate, run 
effect, treatment × run, error of split-plot, and error of 
sampling. The comparisons among the treatments were 
conducted by Duncan’s multiple range test. The statistical 
significance of the means was defined by P ≤ 0.05 and a 
trend was declared if 0.05 < P ≤ 0.10. 

3. Results
3.1. Methane release, TAC, and MBP
Dietary supplementation with the different Zn sources 
decreased the in vitro methane production (P < 0.05), 
so the lowest methane release was observed for the diets 
containing the supplemental nano-ZnO (Table 4). Similar 
to the ZnO treatments, the in vitro ruminal TAC was 
improved by inclusion of nano-ZnO in the diet (P < 0.05). 
As compared with the control treatment, adding both 
supplemental Zn sources increased the amounts of MBP 
(P < 0.05) and MBP was maximum for the nano-ZnO 
treatments. However, MBP efficiency (EMBP) was not 

Table 4. Effect of different levels of supplementary Zn (mg/kg diet DM) as nano-ZnO, compared with ZnO, 
on in vitro methane release, total antioxidant capacity (TAC), microbial biomass production (MBP), and MBP 
efficiency (EMBP).

Zn source Control ZnO Nano-ZnO SEM P-value
Added Zn 0 20 40 60 20 40 60 T R T × R
*CH4 16.15a 14.80ab 14.65ab 13.75ab 12.73b 11.49b 11.86b 0.718 0.025 0.525 0.894
†CH4 35.43a 33.70ab 33.62ab 31.91abc 29.17bc 26.41c 27.75bc 1.712 0.034 0.500 0.978
‡CH4 16.15a 14.80ab 14.65ab 13.75ab 12.73b 11.49b 11.86b 0.718 0.025 0.645 0.905
§TAC 848b 1231a 1134a 1212a 1115a 998ab 1031ab 61.30 0.031 0.423 0.896
£MBP 255c 268bc 272bc 268bc 310a 283ab 286ab 7.117 0.023 0.769 0.957
₰EMBP 346 348 354 343 379 357 356 10.30 0.363 0.878 0.962

SEM: Standard error of the mean, T: treatment, R: run, * CH4: % of total gas, † CH4: mL/g incubated DM, ‡ CH4: 
mL/g degraded substrate, § TAC: μmol Fe2+/L, £ MBP: mg/g incubated DM, ₰ EMBP: mg/g degraded substrate, a–c 
means in the same row with different superscripts differ (P ≤ 0.05). 
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Table 5. Effect of different levels of supplementary Zn (mg/kg diet DM) as nano-ZnO, compared with ZnO, 
on in vitro gas production (GP) and estimated parameters (24-h incubation) as well as kinetics of GP (120-h 
incubation).

Zn source Control ZnO Nano-ZnO SEM P-value
Added Zn 20 40 60 20 40 60 T R T × R

GP 43.54b 45.59a 45.27ab 46.42a 45.96a 46.12a 46.92a 0.48 0.041 0.960 0.175

OMD 648b 666ab 664ab 674a 670a 671a 678a 3.26 0.024 0.947 0.488

ME 9.62b 9.90ab 9.86ab 10.01a 9.95a 9.97a 10.08a 0.076 0.047 0.941 0.531

TDS 734d 769c 770c 778bc 815a 790abc 802ab 7.33 0.018 0.786 0.820

PF 3.37 3.38 3.41 3.37 3.55 3.43 3.42 0.058 0.754 0.850 0.242

B 63.57c 66.13bc 66.76abc 67.04ab 69.68a 66.28bc 68.69ab 1.01 0.025 0.349 0.907

c 0.037 0.038 0.038 0.041 0.037 0.041 0.039 0.002 0.468 0.506 0.824

SEM: Standard error of the mean, T: treatment, R: run, GP: gas production (mL/200 mg DM), OMD: organic 
matter digestibility (g/kg), ME: metabolizable energy (MJ/kg DM), TDS: truly degraded substrate (g/kg DM), 
PF: partitioning factor (mg TDS/mL GP), B: the asymptotic value of gas production (mL/200 mg DM), c: the 
first-order fractional rate constant of gas production (/h), a–c means in the same row with different superscripts 
differ (P ≤ 0.05).

Table 6. Effect of different levels of supplementary Zn (mg/kg diet DM) as nano-ZnO, compared with ZnO, on in 
vitro ruminal pH, ammonia-N (mg/dL), total volatile fatty acids (TVFA; mmol/L), and individual VFA (mol/100 
mol).

Zn source Control ZnO Nano-ZnO SEM P-value
Added Zn 0 20 40 60 20 40 60 T R T × R
pH 6.46 6.42 6.47 6.45 6.51 6.51 6.46 0.032 0.402 0.943 0.940
Ammonia-N 14.15 17.56 14.99 16.46 14.75 16.32 14.08 1.280 0.234 0.910 0.812
TVFA 55.87 60.95 61.75 60.96 60.69 59.99 60.11 1.776 0.091 0.957 0.938
Acetate (A) 64.000 61.118 62.061 60.828 60.630 60.033 61.010 1.814 0.444 0.831 0.805
Propionate (P) 22.747 25.464 24.627 25.220 25.180 25.018 25.445 0.932 0.256 0.739 0.741
Butyrate 11.113 10.911 11.273 11.570 11.846 12.071 11.000 0.610 0.458 0.986 0.970
Iso-butyrate 1.820 2.162 1.740 2.012 2.204 2.278 2.105 0.167 0.241 0.945 0.654
Valerate 0.176 0.196 0.178 0.202 0.192 0.201 0.182 0.271 0.983 0.753 0.899
Iso-valerate 0.143 0.159 0.131 0.160 0.166 0.171 0.167 0.013 0.221 0.901 0.884
A:P 2.81a 2.40b 2.52ab 2.41b 2.41b 2.40b 2.40b 0.095 0.044 0.892 0.883

SEM: Standard error of the mean, T: treatment, R: run, a–b means in the same row with different superscripts differ 
(P ≤ 0.05).

affected by the different Zn supplementations (P > 0.05). 
The run and the interaction between treatment and run 
did not differ for methane release, TAC, MBP, and EMBP 
(P > 0.05).
3.2. Gas volume and estimated parameters
Comparable with the ZnO treatments (Table 5), the 
GP, OMD, ME, and TDS of the diets containing the 
supplemental nano-ZnO were greater than those of the 
control diet (P < 0.05). Addition of the supplementary 

Zn sources to the diet failed to change the PF (P > 0.05). 
Dietary supplementation with nano-ZnO, similar to ZnO, 
increased B (P < 0.05), but had no significant effect on 
c (P > 0.05). There were not significant effects of run or 
treatment and run interaction on the GP and estimated 
parameters (P > 0.05).
3.3. pH, ammonia-N, VFA, and protozoa
As shown in Table 6, supplementation of the diet with 
nano-ZnO, like ZnO, had no effect on the in vitro ruminal 
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pH and ammonia-N concentration (P > 0.05). Compared 
with the control diet, the acetate to propionate ratio 
was lower (P < 0.05) and the total VFA concentration 
tended to be higher for the diets containing different 
supplemental Zn sources. The numbers of total protozoa, 
Isotrichidae, and Entodiniinae were negatively affected 
by dietary supplementations of ZnO and nano-ZnO (P < 
0.05) and the lowest values were observed for the nano-
ZnO treatments (Table 7). The subfamilies Diplodiniinae 
and Ophryoscolecinae were not significantly changed by 
dietary inclusion of the nano and inorganic Zn sources (P 
> 0.05). No significant effects of run or interaction between 
treatment and run were observed on the in vitro ruminal 
pH, ammonia-N, VFA, and protozoa (P > 0.05).

4. Discussion 
4.1. Methane release, TAC, and MBP
The declining effect of the Zn supplements on methane 
production in this study could partly be associated with 
the lower protozoa enumeration and acetate to propionate 
ratio [37] for the Zn-containing diets, especially the nano-
ZnO source. Methane generation can be decreased by 
redirecting hydrogen flow towards other electron acceptors 
such as propionate [38]. The decreased methane could 
also be due to the adverse effect of Zn supplementation on 
the methanogenic bacteria population [39]; in particular, 
the inhibitory action of nano-ZnO on methanogens has 
been emphasized [1,7]. It was reported that nanoparticles 
inhibit methane emission by reducing the population of 
Archaea and suppressing acetate kinase and coenzyme 
F420 [14]. Furthermore, methanogens are located on the 
external surfaces of the protozoa as symbiotics [38] and, 
in the present study, adhesion of methanogenic bacteria 
to protozoa may be reduced by the supplementary Zn, as a 
divalent cation, via limitation of available attachment sites 

on the bacterial cells [40]. Finally, as stated by Sarker et 
al. [2], methanogenic bacteria can convert up to 70% of 
acetate to methane; hence, the lower acetate proportion in 
the ZnO and nano-ZnO groups may be a reason for the 
lower methane production.

Comparable with the present study, Sarker et al. 
[1] showed that a diet containing nano-ZnO resulted 
in lower in vitro methane release compared with a diet 
free of supplementary Zn. Also, the reduction effect of 
nanoparticles (e.g., ZnO) on methane production from 
anaerobic codigestion of primary and excess sludge was 
indicated by Adegbeye et al. [14].

Although Sharma et al. [41] reported oxidative stress 
due to the effect of nano-ZnO, the present study showed 
that the Zn nanoparticles did not adversely affect the 
ruminal TAC. The nano-ZnO supplementation actually 
improved the antioxidant power, because Zn is a strong 
antioxidant metal decreasing the free radicals [6]. It 
has also been reported that nano-ZnO can increase 
antioxidant activity and decrease free radicals due to the 
increased specific surface area and thus the higher number 
of active sites [42,43]. Similarly, in the study conducted 
by Mohamed et al. [44], Zn nanoparticles improved the 
antioxidant capacity in sheep.

The higher MBP for the diets containing Zn 
supplements could be related to the better adhesion 
of the ruminal microbes to the feed, which improves 
the colonization and activity of microbial populations 
[45,46]. The improved MBP could also be due to the 
lower energy loss as methane, which may lead to better 
synchrony between energy and nitrogen sources. The 
promoting effect of metal nanoparticles (as prebiotics and 
probiotics) on the growth of beneficial bacteria in digesta 
was suggested by Adegbeye et al. [14]. Bąkowski et al. [42] 
also mentioned increased ruminal microorganisms as an 
effect of Zn nanoparticles.

Table 7. Effect of different levels of supplementary Zn (mg/kg diet DM) as nano-ZnO, compared with ZnO, on in 
vitro ruminal protozoa enumeration (×105/mL digesta).

Zn source Control ZnO Nano-ZnO SEM P value
Added Zn 0 20 40 60 20 40 60 T R T × R

Total protozoa 15.82a 13.82b 14.01b 13.76b 13.39b 13.30b 13.41b 0.411 0.034 0.852 0.944

Isotrichidae 2.98a 2.47ab 2.39ab 2.21b 2.50ab 2.40ab 2.30ab 0.215 0.045 0.920 0.700

Ophryoscolecidae

Entodiniinae 8.97a 7.91ab 7.75b 7.81ab 7.37b 7.50b 7.33b 0.305 0.039 0.769 0.815

Diplodiniinae 3.01 2.49 2.81 2.86 2.43 2.42 2.73 0.279 0.460 0.960 0.839

Ophryoscolecinae 0.963 0.953 1.06 0.880 0.991 0.982 0.953 0.071 0.354 0.945 0.895

SEM: Standard error of the mean, T: treatment, R: run, a–b means in the same row with different superscripts differ 
(P ≤ 0.05).
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4.2. Gas volume and estimated parameters
Unlike studies that focused on the toxic effects of Zn 
nanoparticles on animals [17–19], nano-ZnO in the 
current experiment had no adverse effect on the dietary 
energy availability. Similar to ZnO, the increasing effect 
of supplementary nano-ZnO on the in vitro GP, OMD, 
ME, and TDS could be caused by the positive influence 
of Zn on the ruminal microbial growth and the role of 
Zn as a bivalent cation in the better attachment between 
the microbes and feed particles [46]. Moreover, it is 
mentioned that nanoparticles demonstrate nanocatalyst 
activity and supplementing Zn nanoparticles can increase 
the activity of some digestive enzymes (protease, amylase, 
and lipase), resulting in higher diet digestibility [14]. The 
positive effect observed on the diet fermentation indicated 
that the Zn requirements of the ruminal microbes were 
better met by dietary supplementation of the Zn sources, 
especially nano-ZnO. In the study conducted by Sarker 
et al. [1], dietary inclusion of nano-ZnO had no positive 
or negative effects on in vitro ruminal GP. Adegbeye et 
al. [14], however, reported higher diet digestibility with 
dietary supplementation with nanoparticles. On the other 
hand, the effect of nano-ZnO in improvement of the TDS 
was slightly higher than that of ZnO, probably due to the 
greater surface activity and stronger absorbing capability 
of the former, encouraging more growth of fiber-
degrading microorganisms [47]. The improving effect of 
other bivalent cation nanoparticles (such as Ca) on the 
cellulase activity, and thereby higher fiber degradation, 
was observed by Yousef et al. [48]. They related it to ionic 
strength, which increases the bacterial adhesion to the 
substrate.

Similar to the present study, the diet digestibility was 
affected positively by Zn nanoparticles in in vivo [44] and 
in vitro [47] studies. However, other researchers reported 
that feeding nano-ZnO instead of ZnO failed to change 
the digestibility of diets in piglets [9]. 

In the present study, the PF values for all treatments 
were within the usual physiological range (2.7 to 4.4) 
reported in common nutritional conditions [29]. The 
ineffectiveness of the experimental treatments on PF was 
due to parallel alterations in the amounts of TDS and 
GP. Also, a feedstuff with greater PF means that a higher 
proportion of the TDS is incorporated into the microbial 
biomass, i.e. the EMBP is higher [29,30]. No effect of Zn 
supplementations on PF in the present study was consistent 
with the similar EMBP in different treatments.
4.3. pH, ammonia-N, VFA, and protozoa 
The in vitro ruminal pH (6.42 to 6.51) of the treatments 
was within the typical range (5.5 to 6.8) in a normal 
ruminal fermentation circumstance [3]. Ruminal pH being 
unaffected by the dietary nano-ZnO supplementation was 
similar to the in vitro report of Sarker et al. [1].

The ammonia-N levels in all treatments (14.08 to 17.56 
mg/dL) were within the normal biological range (8.5 to 
30 mg/dL) [49]. The similar concentration of ammonia-N 
among the treatments may show that the proteolysis and 
deamination of amino acids were accompanied by more 
assimilation of ammonia in microbial biomass, as reflected 
in the higher MBP. Moreover, it may be an indication of 
the same activity of the ammonia-producing bacteria [3]. 
However, Adegbeye et al. [14] mentioned lower ruminal 
ammonia-N concentrations by dietary nanomaterial 
supplementation in sheep. Arelovich et al. [50] also 
reported a reduction of ruminal ammonia by addition of 
Zn, probably due to the declined proteolysis or the better 
utilization of ammonia by ruminal microbes.

These discrepancies among the studies may be related 
to factors such as the type of basal diets, the level of Zn 
(deficiency or adequacy) in basal diets, the purity of Zn 
sources, and the content or availability of other minerals 
[13,51]. For example, the dissimilar action of dietary Zn 
supplementation may be due to different interferences 
from various concentrations of other minerals (e.g., Ca, 
Fe, Cu, and P) in different studies. Moreover, in a Zn 
supplement of higher purity, there are fewer interfering 
factors for Zn action [51]. On the other hand, both rumen 
bacteria and feed particles have negative surface charges; 
thus, the optimum concentration of cations, such as Zn, 
creates an attraction between the microbe and feed surface 
[52]. However, high Zn levels (in the form of heavy metal 
salts) in some studies may denature and inactivate soluble 
proteins including feed-degrading enzymes or may limit 
available attachment sites on the bacterial cell [40]. Also, 
it was noted that at a sufficient dietary level of Zn, the 
supplementary Zn bioavailability may be less important 
than the circumstances of limited dietary levels of Zn [53]. 
It seems that in our research, the concentration of Zn in 
the control diet was not sufficient for proper microbial 
activity and optimal production of microbial biomass, but 
the Zn supplementations improved these parameters.

The slightly higher in vitro ruminal VFA for the diets 
including Zn supplements could be related to the higher 
TDS [3] of these diets compared with the control. The 
improved TDS and hence the higher VFA production 
are indications of the positive effect of the nanoparticles 
on the activity of the microbial population [14]. Another 
probable reason could be the higher energy utilization 
by the rumen microorganisms, for producing higher 
microbial biomass, causing more total VFA production in 
ZnO- and nano-ZnO-supplemented groups, as mentioned 
by Sarker et al. [1]. On the other hand, the lower acetate 
to propionate ratio of the nano-ZnO groups, similar to 
ZnO, was in parallel with their lower methane production 
as compared with the control diet, due to redirecting the 
hydrogen flow towards propionate [38]. In another study, 
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Adegbeye et al. [14] mentioned that dietary nanoparticle 
supplementation improved the diet fermentation and 
increased the propionate concentration. Contrary to the 
present study, Sarker et al. [1] reported a decreased in 
vitro total VFA concentration by inclusion of nano-ZnO 
in the diet compared with the control treatment. They 
noted that high levels of nano-ZnO may sometimes kill 
higher amounts of methanogenic bacteria, which results 
in a greater amount of unconverted total VFA [1]. Swain et 
al. [54], however, showed that feeding goats with different 
levels of nano-ZnO instead of ZnO failed to change 
individual and total rumen VFA.

In the present study, the lowest protozoa enumeration 
was observed for the nano-ZnO-supplemented groups, 
which was in parallel with the results on methane release, 
so that the lowest methane was detected for the nano-ZnO 
treatments. The decreased in vitro ruminal protozoa count 
with the Zn supplementations may possibly be due to 
the physiological changes in the cell membrane integrity, 

endocytosis rate, cell proliferation, grazing capacity, and 
metabolic activity [55]. Antiprotozoal activity of other 
nanoparticles (e.g., silver) was suggested by Bąkowski et al. 
[42]. Contrary to the present work, no effect of Zn sources 
on protozoa enumeration was reported by Kumar [47]. 

In conclusion, dietary Zn supplementation with nano-
ZnO had no adverse effect on in vitro ruminal fermentation 
and digestibility. Addition of 20 mg of Zn supplement as 
nano-ZnO per kg diet DM, similar to ZnO, was sufficient 
to improve the in vitro ruminal fermentation in terms of 
the amounts of methane release, TAC, and MBP. Thus, 
higher supplementary Zn levels (i.e. 40 and 60 mg/kg DM) 
are not recommended.
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