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1. Introduction
In genomic studies, complex traits can be modelled using 
repeated measures to achieve a better understanding of 
the underlying biology [1,2]. An increasing number of 
available measurements per individual might reduce 
the measurement noise and thus increase the detection 
of true genomic signals [3,4]. However, cross-sectional 
genome-wide association studies (GWASs) are commonly 
used to investigate correlations between single nucleotide 
polymorphisms (SNPs) and complex phenotypes. In 
genomic studies, abstracting a dynamic biological 
process of complex phenotypes into a single observation 
(i.e. averaging of observations) [5,6] or discarding the 
correlations among the available measurements over time 
might lead to suboptimal conclusions [7,8]. 

Using single SNP regression methodologies, GWASs 
are used to identify sources of variations. The problem of 
whole genetic variation in complex phenotypes cannot 
be accounted for by associated SNPs, termed “missing 
heritability” [9]. Two seemingly divergent assumptions 
have been applied in the development of GWAS models: 
searching for major genes using single SNP regression 
models and assuming that at least one SNP is correlated 

with all genes. This leads to the simultaneous use of whole 
SNPs [10] with the underlying genetic architecture of the 
phenotype. Compared to a single regression approach, 
employing whole genome regressions can better explain 
genomic variation [11] for some phenotypes in some 
organisms.

In chicken farming, longitudinal measures of egg 
weight (EW) are commonly recorded for breeding 
purposes. EW is influenced by both environmental and 
genetic factors. Different from other organisms, livestock 
(particularly chicken) experiments have pruned the 
sources of variations due to the use of homogenized 
lines and controlled environmental factors [12]. Based 
on the above discussion, to identify the genomic 
locations associated with EW, it is necessary to consider 
assumptions about the genetic architecture of the EW 
with special reference to the longitudinal nature [13] of 
the measurements. Recently, Liu et al. [14] detected time 
specific genomic signals for EW using separate association 
tests. The main objective of this study is to predict the 
genomic signals over a logistic curve referring to multiple 
underlying genetic architectures, for both simulated [15] 
and longitudinal EW [14] datasets.
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2. Materials and methods
2.1. Materials
The pedigree included 100 full-sib families, each with 20 
progenies. The longitudinal quantitative phenotypes were 
simulated at five time points (0, 132, 265, 397, and 530 
days). The genome consisted of 453 SNPs distributed over 
5 chromosomes and across 5 Morgan (M). The details of 
the simulated dataset can be found in [15].

The chicken data were obtained from 92 sires and 
801 dams of an 11th generation Rhode Island pure line, 
with a total of 1078 hens [14]. We analysed longitudinal 
measurements of the initial EW, and again at 28, 36, 56, 
66, and 72 weeks old. Before statistical analyses, SNPs 
were removed from the data if the Hardy–Weinberg 
equilibrium P-value was less than 1e-6, or if the minor 
allele frequency was less than 1%. Finally, a total of 294,705 
SNPs were collected for the genomic analyses. The details 
of the chicken dataset can be found in [14].
2.2. Methods
We applied various genomic association models to explore 
the different genetic architectures of the longitudinal 
phenotypes in both simulated QTLMAS and the chicken 
dataset. Here we used the logistic growth function to model 
the repeated measurements. The logistic growth curve was 
considered the most common model to define the time 
specific dynamics of the biological process [16,17]:
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where y(t) is the measurement at time t, a is the asymptote 
of the measurement of the animal, r is the steepness 
(growth rate) of the curve, and b is the ratio of current and 
initial measurements. 

We used GRAMMAR and EGSCORE (conducting 
genome-wide rapid association using mixed model and 
regression) functions in the GenABEL package [18] for 
single SNP regression association analyses to estimate 
the parameters of the logistic growth curve (Eq. (1)). The 
GRAMMAR (raw, genomic control, or gamma versions) 
function corrects the phenotypes using a genomic 
relationship matrix by:

y = Xd + Za + e (2)
where y contains the observations (estimated logistics 
curve parameters as a, b, and r), d is the fixed effects, a 
is the additive genetic effect, matrices X and Z are the 
incidence matrices, and e is a vector containing residuals.y(t) =
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For the random effects, it is assumed that A is the 
additive genomic relationship matrix for the animals, I 
is an identity matrix, σ²a is the additive genetic variance, 
and σ²e is the residual variance. In the second step, the 
association could be detected by:

y = Xf + η + e (3)
where y represents a vector of residuals obtained from 

Eq. (2), η is an intercept, X is a design matrix relating 
observations with f regression coefficients vector to be 
estimated, and e is a vector of residuals assumed to be 
normally distributed. Population stratification could 
also be corrected by the principal components using the 
EGSCORE [19] function implemented in GenABEL. 
We also used the functional genome-wide association 
(fGWAS) model to combine longitudinal phenotypes to 
increase statistical power for detecting genomic signals 
[3,6]. In fGWAS, the time dependent mean value of 
genotype j at time t could be used to predict the additive 
effect of the SNP, a(t):
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where µ1(t) and µ3(t) represents AA and aa homozygote 
genotypes at time t, respectively. Due to the huge number 
of multiple hypotheses for testing, we used a false 
discovery rate approach to reduce type 1 errors in single 
SNP regression models.

We used the Bayesian lasso (BL) and Bayes C(π) models 
[20] to predict SNP effects using Gibbs sampling [21]:
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where yi is the phenotype of the ith animal for the 
estimated parameters of the logistic curve from Eq.(1); zij  
is an indicator variable for the ith animal, jth SNP locus, 
and kth allele; aj is the marker locus effect; δj indicates 
if the SNP has an effect or not; and ei  is the residual for 
animal i. For each phenotype, the Markov chain Monte 
Carlo (MCMC) algorithm was run for 1,000,000 samples, 
and the first 2000 samples were discarded as the burn-
in period. As a thinning method, we collected each 10th 
sample from each realization of the MCMC. We used the 
default value of GS3 so that the proportion of quantitative 
trait loci (QTLs) (π) in the whole genome was 0.01. For 
comparison purposes, we standardized the SNP effects 
by subtracting the mean and dividing by the standard 
deviation of the SNPs.

3. Results
GWASs are commonly used to locate associated genetic loci 
with quantitative phenotypes in domestic animals. Using 
different statistical models, we investigated the effects of 
various assumptions about the genetic architecture of EW 
in chickens and QTLMAS datasets. 
3.1. QTLMAS results
We used a logistic growth model [22] to detect genomic 
signals in the QTLMAS dataset. The GWAS for the 
QTLMAS dataset was performed using each of the 
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logistic growth model parameters. The estimated genomic 
heritabilities were 0.061, 0.234, and 0.153 for the asymptote 
(A), inflection point (I), and scaling factor (S) parameters, 
respectively. The existence of true genomic signals was 
inferred by comparing our predicted SNP locations with 
QTLMAS organizer results at 10 cM intervals. Different 
from single SNP regression models, Bayesian models 
simultaneously use whole markers in association with the 
phenotype (achieved through different prior distributions, 
and hence different genetic architectures). The predicted 
SNP effects were sorted based on the absolute standardized 
regression effects (with minimum posterior inclusion to 
the model of 0.001) for the Bayesian models. The mean 
heterozygosis (and its standard error) of SNPs and animals 
were 0.2072 (0.1618) and 0.2126 (0.028), respectively. 

We hypothesized various genetic architectures for the 
simulated QTLMAS dataset. The single SNP regression 
models were used to search for major genes by the 
genomic relationship matrix (GRAMMAR) and principal 
component (EGSCORE) approaches. The results of the 
single SNPs and Bayesian analyses are summarized in 
Table 1. Genome-wide significant SNPs were identified 
for all logistics curve parameters. By carrying out a 
single SNP regression GWAS, we detected up to 13 SNPs 
in GRAMMAR and 18 SNPs in PCR approaches using 
a corrected threshold for values of P < 0.05. Genomic 
inflation factors were predicted to be between 1 and 
1.296 by GRAMMAR and 2.001 and 4.464 by EGSCORE 
approaches. By Bayesian models, we detected up to 24 
SNPs in the Bayes C(π) model and 12 in the BL model. 

Unlike the 2-step approaches, the fGWAS model 
accounts for the joint effects of the repeated measurements 
over the logistic curve (Eq. (1)). The implementation of the 
model was done by a maximum likelihood approach using 
the R package of fGWAS [6]. The Manhattan plot of the 
fGWAS is given in Figure 1. fGWAS analyses resulted in 22 
associations with 12 false positives. Figure 2 shows how the 
genotypes of the most significant SNP (all_0.9137) affect 
the mean curve of the phenotype. The additive effects of 
all SNPs on the longitudinal phenotypes tend to increase 
with age (Figure 2). 
3.2. Chicken data results
The mean heterozygosity (SD) for the SNPs and the 
chickens were predicted as 0.3398 (0.1436) and 0.3400 
(0.0175), respectively. The estimated genomic heritabilities 

Table 1. The number of true/total significant SNPs (number of 
true QTLs) from GWA  obtained from the estimated parameters 
of logistics curve (asymptote, inflection point, and scaling factor) 
using GRAMMAR, EGSCORE, Bayes C(π), and Bayesian lasso 
(BL) models.

Asymptote Inflection
point

Scaling
factor

GRAMMAR 6/14 5/14 2/16
EGSCORE 6/20 9/16 3/20
Bayes C(π) 10/20 8/20 6/20
BL 4/20 4/20 4/20

Figure 1. The Manhattan plots of –log 10 (P-values) using all SNPs obtained by the fGWAS model using 
QTLMAS dataset.
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were 0.0176, 0.0068, and 1.20e-08 for the asymptote (A), 
inflection point (I), and scaling factor (S) parameters, 
respectively. The estimates of time specific heritabilities 
were 0.3638, 0.5205, 0.1058, 0.3769, 0.1078, and 0.1748 for 
the first EW and 28, 36, 56, 66, 72, and 80 weeks of age, 
respectively, using a pedigree-based restricted maximum 
likelihood approach [23].

The genomic inflation factors were predicted to be 
between 1 and 1.2160 by GRAMMAR and 1.03 and 1.33 
by EGSCORE approaches. A genome-wide significant SNP 
affecting the asymptote was predicted on chromosome 

2 and chromosome 6 using GRAMMAR (Table 2) (FDR 
corrected P-values of <0.0001) and EGSCORE (FDR 
corrected P-values of <0.0001) approaches (Table 3). SNPs 
affecting the inflection point were found in chromosome 
2 using GRAMMAR (FDR corrected P-values of 0.0001) 
and EGSCORE (FDR corrected P-values of 0.0001) 
approaches. Two significant SNPs were detected by 
EGSCORE for scale parameter on chromosome 1 (FDR 
corrected P-values of 0.00013) and 11 (FDR corrected 
P-values of 0.0065). A genomic region on chromosome 2 
in association with EW was also reported by Honkatukia 

Figure 2. The mean logistic growth curve at the SNP all_0.9137 using 3 genotypes as 11, 
10, and 00 with likelihood value of 629.7, minor allele frequency (MAF) of 0.446, and 
no missing genotypes (NMISS = 0).

Table 2. The GWA results obtained from the estimated asymptote parameters of logistics curve using GRAMMAR model 
for the chicken dataset.

Single nucleotide
polymorphism Chromosome Location No of 

individuals Chi-square P-val. FDR

AX-75956307 2 104412633 1063 45.5958 1.45e-11 1.09e-06
AX-75956326 2 104421751 1063 45.5595 1.48e-11 1.09e-06
AX-75956389 2 104456371 1063 47.63451 5.14e-12 1.09e-06
AX-80755176 2 104444429 1063 45.5595 1.48e-11 1.09e-06
AX-80972053 6 32636946 1063 44.10385 3.11e-11 1.83e-06
AX-76950202 6 32596862 1063 40.77894 1.70e-10 3.58e-06
AX-76950231 6 32606739 1063 40.77894 1.70e-10 3.58e-06
AX-76950292 6 32624648 1063 40.77894 1.70e-10 3.58e-06
AX-76950312 6 32631539 1063 40.77894 1.70e-10 3.58e-06
AX-76950321 6 32634867 1063 40.77894 1.70e-10 3.58e-06
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et al. [24] and Tuiskula-Haavisto et al. [25], similar to our 
results using the GRAMMAR and EGSCORE approaches.  

The genetic architecture of longitudinal traits is related 
to the number and effects of associated SNPs conditional 
on the assumption for the shape of the mean curve 
of the repeated measurements of the phenotypes. We 
used fGWAS for a combination of the longitudinal EW 
measurements and genomic data to increase the power 
of the association analyses. fGWAS analyses detected 20 
genome-wide significant SNPs (Table 4). Among them, 
15 were located on chromosome 1. A Manhattan plot 
for fGWAS analyses is presented in Figure 3. Most of the 
significant SNPs are located within 168.71 and 168.86 Mb 
on GGA1.

We used Bayesian variable selection models with 
different priors to allow for SNPs with different effects in 

Bayes C(π) (Table 5) and BL (Table 6). One highly significant 
SNP (AX-76640358) was located on chromosome 4 on 
2906524 bp by both Bayes C(π) and BL. Significant SNP 
effects on chromosome 4 were also reported but from 
different positions by Wolc et al. [26], Schreiweiss et al. 
[27], and Sasaki et al. [28]. The Bayes C(π) model using the 
asymptotic (a) revealed the strongest SNP association on 
chromosome 2 (AX-76096675). Several genomic regions 
on chromosome 2 were also located by Honkatukia et al. 
[24] on EW and Tuiskula-Haavisto et al. [25] on late EW 
(46–61 weeks). 

4. Discussion
EWs have been considered among the important selection 
targets for both customers and producers, especially 
during certain laying periods [26,29]. In this study, 

Table 3. The GWA results obtained from the estimated asymptote parameters of logistics curve using EGSCORE model for 
the chicken dataset.

Single nucleotide
polymorphism Chromosome Location No of 

individuals Chi-square P-val. FDR

AX-75956073 2 104276426 1063 53.81052 2.21e-13 3.26e-08
AX-75956228 2 104369820 1063 53.81052 2.21e-13 3.26e-08
AX-75956230 2 104370166 1063 49.52012 1.96e-12 1.14e-07
AX-75956307 2 104412633 1063 48.94421 2.63e-12 1.14e-07
AX-75956326 2 104421751 1063 48.88544 2.71e-12 1.14e-07
AX-75956389 2 104456371 1063 49.11973 2.41e-12 1.14e-07
AX-80755176 2 104444429 1063 48.88544 2.71e-12 1.14e-07
AX-75956319 2 104419495 1063 48.4373 3.41e-12 1.22e-07
AX-76950027 6 32536761 1063 48.06352 4.13e-12 1.22e-07
AX-80853767 6 32530677 1063 48.06352 4.13e-12 1.22e-07

Table 4. Summary of top 10 identified loci for the chicken dataset using the 
fGWAS model.

SNP CHR Position Minor allele
frequency P-val.

AX-80745839 1 168720658 0.425212 1.53e-08
AX-80826503 1 168719617 0.424271 1.79e-08
AX-75334447 1 168724175 0.423801 2.05e-08
AX-75334463 1 168729832 0.415804 5.84e-08
AX-75334594 1 168789601 0.417215 6.28e-08
AX-75334726 1 168844535 0.412512 1.51e-07
AX-75334678 1 168824266 0.412512 1.55e-07
AX-75334461 1 168728872 0.431797 1.65e-07
AX-75916442 18 9905356 0.069144 1.72e-07
AX-75334450 1 168724934 0.429915 1.72e-07
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we aimed to detect genomic variants that might affect 
longitudinal measurements of EWs using various genomic 
models. Two distinct assumptions were evaluated for the 
genetic architecture of the EW: (a) the use of the single 
SNP models to detect major genes, and (b) the use of 
whole genome regression models [11] to detect both 
small and major genes that might affect longitudinal EW 
measurements. 

We propose that the analyses of the simulated 
datasets could be useful for comparing different statistical 

models. We investigated various genomic models using a 
simulated QTLMAS dataset. Our results show that Bayes 
C(π) (10/20) (Table 1) and fGWAS (12/22) (Figure 1) have 
greater accuracy than the other tested models. Our Bayes 
C(π) findings are in agreement with the results of Heuven 
and Janss [30] and Veerkamp et al. [31], who both used 
Bayes C type models and detected 8 and 9 QTLs from 
the QTLMAS dataset, respectively. Since the model does 
not include a polygenic component, we used a stringent 
false discovery rate (P < e-15) threshold for fGWAS. 

Figure 3. The Manhattan plots of –log 10 (P-values) using all SNPs obtained by the fGWAS model using chicken dataset.

Table 5. The GWA results obtained from the estimated asymptote 
parameters of logistics curve using Bayes C(π) for the chicken 
dataset.

SNP Chromosome Position Effect

AX-76096675 2 45380463 64.90982
AX-76640358 4 2906524 50.52048
AX-76640730 4 2926392 46.38021
AX-76097075 2 45623951 44.50279
AX-76640820 4 2931026 43.00988
AX-76640646 4 2921304 40.50876
AX-76640535 4 2915510 39.79021
AX-76096597 2 45336622 36.45069
AX-77116057 8 6713905 35.72584
AX-77115981 8 6683020 35.06507

Table 6. The GWA results obtained from the estimated asymptote 
parameters of logistics curve using Bayesian lasso (BL) for the 
chicken dataset.

SNP Chromosome Position Effect

AX-76640646 4 2921304 9.847588
AX-76365700 27 4149177 9.576412
AX-76365716 27 4153001 9.481536
AX-77116057 8 6713905 8.897123
AX-76640535 4 2915510 8.764108
AX-77115981 8 6683020 8.342496
AX-76640358 4 2906524 8.114362
AX-76365630 27 4129765 8.05678
AX-76365679 27 4144834 7.966066
AX-77115967 8 6676897 7.905176
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Similarly, we observed falsely increased heritabilities when 
we excluded the polygenic component from model (1) as 
0.5283, 0.8049, 0.8407, 0.5347, 0.7192, 0.4535, and 0.4238 
for the first EW and 28, 36, 56, 66, 72, and 80 weeks of 
age, respectively. fGWAS has advantages over other single 
SNP models due to an improved power for association 
detection by achieving the combination of the longitudinal 
measurements over the mean trajectory [1]. 

The highest heritabilities were predicted for 28 (0.5205) 
and 36 (0.5027) weeks of age, which are consistent with the 
findings of Liu et al. [14]. Since Liu et al. [14] used genomic 
relationships to predict time specific heritabilities (we 
used pedigree-based variance components for obtaining 
heritability estimates), their heritability estimates 
decreased [32].

Using fGWAS, we mapped the associated region 
(Figure 3) previously shown to include a QTL affecting 
the EW on chromosome 1 [14]. Liu et al. [14] detected the 
genomic signal specifically for week 36 and our fGWAS 
data (when combining whole longitudinal observations) 

confirmed this result. However, Liu et al. [14] stated that 
the associated signals of chromosome 1 for week 36 also 
correlated with weeks 28, 56, and 66, but without reaching 
statistical significance. 

The results obtained from this study show that fGWAS 
can be useful for manipulating dynamic EW over the 
entire laying period (based on a moderate to major 
effect). The fGWAS SNPs that were associated with EW 
were located on chromosome 1, close to the gene DLEU7, 
which regulates ovary weight in chickens [14,33]. The 
SNPs were detected based on the absolute effect sizes 
using Bayes C(π) (Table 5) and BL (Table 6) is likely useful 
for predicting the polygenic risk scores and/or genomic 
breeding values during genomic selection for longitudinal 
EW measurements.
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