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1. Introduction
Variance sources are the basis for organization of progeny 
testing, calculation of genetic-environment interaction, 
construction of selection index, calculation of mixed model 
BLUP, estimation of phenotype-environment correlation, 
planning of improvement program with identified genetic 
structure in quantitative characters, estimation of variance 
components, and estimation of accurate breeding value 
[1,2]. Accuracy of estimation of variance components 
depends on factors that include observations, statistical 
model used, and method [3]. Therefore, many researchers 
have tried to improve different methods for estimation of 
variance components [4–9].

ANOVA, ML, and REML are the most used methods 
for estimation of genetic variance [10]. These methods 
have been called classical approaches (frequentist, Berkeley 
methods) and are based on normality assumption. However, 
the existence of threshold traits and the observation 
of binary data in animal breeding violates the rule of 
normality assumption [11,12]. Therefore, the Bayesian 
approach, another alternative method to overcome this 

concern, has been developed and this approach that does 
not require normality can be alternatively used to estimate 
variance components by using posterior distribution in 
discrete and continuous distributed traits [13–16]. In this 
respect, the Bayesian approach has more advantages than 
the classical approach in practice [17]. At the same time, 
no negative variance can be estimated under the Bayesian 
approach [18]. In the genetic evaluation of animals, the use 
of the MCMC algorithm in Bayesian approach has been a 
good option and this approach has been reducing bias in 
the estimations even when the dataset is too small [19]. 
At the same time, the Bayesian approach is statistically 
more flexible for estimations of variance components than 
the REML procedure [15]. In addition, some researchers 
have suggested that the use of the MCMC algorithm 
in the Bayesian approach is more feasible although it is 
computationally more expensive [20,21]. However, with 
the developed computer technology, various programs 
such as MTGSAM [22], GIBANAL [23], MCMCglmm 
[24], and FlexQTLs [25,26] have increased the popularity 
of the Bayesian approach. Under the National Small 
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Ruminant Improvement Project under Farmer Conditions 
carried out in Turkey, the live weights of Awassi lambs 
were collected. However, no important steps were taken 
in order to evaluate these records accurately to estimate 
parameters that would be the basis for ongoing selection 
programs. In the literature, there are many studies using 
the REML method to estimate genetic parameters of 
different breeds [27–32]. However, some researchers used 
different animal models under the Bayesian approach in 
small ruminant animals [18,19]. Therefore, in this study, 
we aimed to estimate genetic parameters of the weaning 
weight of Awassi lambs by using 6 different animal models 
with both the classical approach (REML algorithm) and 
Bayesian approach (MCMC algorithms).

2. Materials and methods
2.1. Data
The data and pedigree information of Awassi sheep raised 
in traditional conditions in Sheep and Goat Breeders’ 
Associations of Osmaniye within the subproject of the 
General Directorate of Agricultural Research and Policies 
(TAGEM) were used. For this purpose, records of weaning 
weight (WW) were analyzed. The sheep were kept in the 
sheep fold during the winter and were fed cotton seed 
meal, peanut straw, and dry grass straw. During the spring 
period, animals were moved to pasture or plateau and 
grazed without additional feeding. Each breeder put his 
own rams into the flock in order to mate randomly after 
mid-June. The rams were joined to the flock for 2 months, 
then left the flock for two weeks and then rejoined the 
flock for mating for another two weeks. The lambing 
season started in early October and lasted until the end 
of February. The lambs were kept with their dams for up 
to 45 days after birth and were completely weaned after 
2–2.5 months. Within the first 24 h after birth, the lambs 
were weighed with digital hand weighing scales (up to 10 
g sensitivity). When the lambs reached an average age of 1 
month they were fed with starter feeds. Weaning weights 
were recorded when the age of the lambs was about 60 ± 
2 days.
2.2. Statistical methods
The records of weaning weight of 4971 lambs born between 
the years of 2012 and 2016 from 80 rams and 1917 ewes 
were used.  Year/season, birth type, sex, age, and flock size 
were used as fixed effects. Since each flock usually used 
its own rams, when the data were classified according to 
the farms, the genetic variance among the sires were also 
dispersed within the farms. To prevent this confounding 
effect, the farms according to flock sizes (the number of 
sheep raised) were classified as n < 400 (1), 401 < n < 500 
(2), or n > 501 (3). Birth weight of the lamb was included 
as a covariate in all models. The GLM procedure of SAS 
was conducted under the following model: 

Yijklmn = m+ai+bj+ck+dl+tm+β (Xijklmn– X–) eijklmn
Here, Yijklmn is the weaning weight; µ is population 

mean; ai is the effect of year/season (2012 - 2013, 2013 - 
2014, 2014 - 2015, 2015 - 2016); bj is the effect of birth 
(single or twin); ck is the effect of sex of lamb (male or 
female);  d is the effect of age of dam (1, 2, 3, …, 6 years); 
tm is the effect of flock size  (n < 400 (1), 401 < n < 500 (2), n 
> 501 (3)); β is the partial regression coefficient of weaning 
weight on birth weight; Xijklmn is the birth weight of the nth 
lamb born in the ith season of jth birth type, kth sex, dth 
age of dam, and mth flock size; x̄ is mean of birth weight; 
and eijklmn is the random residual. All interactions between 
fixed effects were found nonsignificant in initial analyses 
and hence they were ignored.

The direct additive genetic effect, additive maternal 
effect, maternal permanent environmental effect, and 
residual were fitted in all the models as random effects. 

(Co)variance components and genetic parameters 
were estimated for weaning weight (WW) by using 
univariate animal models. These models were fitted for 
WW using the REML procedure in the classical approach 
and MCMC procedure in the Bayesian approach. In the 
matrix notations the univariate mixed linear models used 
were: 
Model 1	 Y = Xb + Zd + e	
Model 2	 Y = Xb + Zd + Zm + e	 Cov(a,m)  = Aσdm
Model 3	 Y = Xb + Zd + Zm + e	 Cov(a,m) =  0
Model 4	 Y = Xb + Zd + W c+ e	
Model 5	 Y = Xb + Zd + Zm + Wc + e	 Cov(a,m)  =Aσdm
Model 6	 Y = Xb + Zd + Zm + Wc + e	 Cov(a,m)  = 0

Here, Y is the vector of WW. b is the vector of fixed 
effects (year/season, type of birth, sex, dam’s age, and flock 
size). d ~ N (0, Aσ2

d ), m ~ N (0, Aσ2
m ), c ~ N (0, Iσ2

c ), and 
e ~ N (0, Iσ2

e ) are direct additive genetic effects (animal), 
maternal genetic effects, and maternal permanent 
environmental and error vectors, respectively. X, Zd, Zm, 
and Wc are the corresponding incidence matrices relating 
the effects with y. A is the numerator relationship matrix 
among animals, and σdm is the additive genetic covariance 
between the additive genetic effects and maternal genetic 
effects.

The following was assumed:
Var (d) = Aσ2

d; Var (m) = Aσ2
m; Var (c) = Idσ2

c; Var (e) 
= Inσ2

e; Cov (d,m) = Aσdm
Here, σ2

d is the direct additive genetic variance, σ2
m is 

the maternal additive genetic variance, σdm is the direct-
maternal additive genetic covariance, σ2

c is the maternal 
permanent environmental variance, σ2

e is the random 
residual variance, and Id and In are the identity matrices 
of an order equal to the number of dams and records, 
respectively [32]. The total heritability (h2

t), the ratio 
of the maternal permanent environmental variance on 
the phenotypic variance (c2), and the ratio of covariance 
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between direct additive genetic effects and maternal effects 
on the phenotype (cam) were calculated according to [33]:

h2
t =  [( σ2

d + 0.5σ2
m + 1.5σdm )] / ( σ2

p )
c2 = ( σ2

pe  / σ
2

p ); cdm = ( σdm /  σp )
According to the REML procedure, if the value of 

-2Log likelihood variance in a simplex function is less than 
10–9, it is accepted that convergence has been reached.  The 
most suitable model for WW was chosen based on Akaike’s 
information criterion (AIC) [34]:

AICi  =  −2logLi  + 2pi 
Here, log Li represents the maximized log likelihood, 

and pi is the number of parameters obtained for each 
model. The model with the lowest AIC was accepted as the 
model best fitting the records of WW [9]. 

In the Bayesian approach, an improper flat prior 
uniform distribution was assigned to b: P(b) ~ constant, 
due to lack of prior knowledge about the vector of fixed 
effects.

In the MCMC algorithm, the inverse Wishart 
distribution was used as a prior distribution for variance 
and co(variance) components (genetic, residual, and 
permanent environmental effects) and REML estimations 
were taken as initial values in all univariate animal models 
[20]. To control the sampling process, three important 
parameters should be considered: nitt, the total number 
of iterations; burn-in, which is the number of iterations 
initially dropped; and thinning interval, which is the 
number of iterations discarded. A single chain was used 
and 250,000–350,000 nitt were produced. Initial discard 
(burn-in period) and thinning interval were set to 100,000 
and 1, respectively. De Villemereuil [35] reported that 
greater numbers of iterations in theory cause greater 
effective sample size and more reliable estimates. The 
Heidelberg test was used to control the convergence that 
existed in the CODA library (Convergence Diagnosis and 
Output Analysis) in R software [36]. If the P value is higher 
than 0.05, convergence is monitored [24]. The deviance 
information criterion (DIC) offered in the MCMC package 
was used to compare models [24]. If the DIC value is the 
smallest and the difference among the models is higher 
than 7, this model fits best [37].

3. Results and discussion
The weaning weight of Awassi lambs was found to be 17.93 
± 0.05 kg. All fixed effects (year/birth season, sex, dam age, 
and flock size) except birth type were found to be highly 
significant (P < 0.01). 

The (co)variance components and genetic parameter 
estimates obtained with single-trait animal models using 
the REML procedure for weaning weight (WW) in Awassi 
lambs are shown in Table 1.

 The direct heritability of WW varied from 0.20 to 
0.35 across models. Model 5, which provided the highest 

phenotypic variance, has the lowest estimate (0.20) of direct 
heritability. Phenotypic variance estimates were similar in 
Models 1, 3, and 4, and the direct heritability obtained 
under these models provided the same value of 0.35. All 
the models estimated null or almost null (0.01) maternal 
genetic variance. The highest genetic direct-maternal 
covariance was obtained under Model 2. On the other 
hand, the highest maternal genetic variance was estimated 
under Model 5. Maternal permanent variance was fitted 
in Models 4, 5, and 6, and it was always estimated close to 
zero. As a result, c2 ( σ2pe / σ2p ), which is the ratio of the 
variance of the maternal permanent environmental effect 
over the phenotypic variance, was negligible. The highest 
value for the total heritability was seen in Model 1, while 
the lowest value was found under Model 5. In general, 
when the estimations of variance components and genetic 
parameters are examined, Models 1 and 3 are very close to 
each other. In these six different univariate animal models, 
genetic correlations between additive genetic effect and 
maternal genetic effect were between 0.00 and 1.00.

A significant estimate of the direct-maternal genetic 
covariance was found under Models 2 and 5, jointly 
with an increase of the residual variance. In addition, the 
extreme estimated direct-maternal genetic correlation of 
1.00 suggests that both genetic effects were confounded. 
Therefore, the existence of this correlation decreased 
the direct heritability estimates due to confounding 
genetic variance with the residual variance. Model 1 
was determined as the best fitting according to the AIC 
criterion, suggesting that the available information is 
insufficient to fit complex models.

The results for the six different models on the same 
trait of the same population under a Bayesian approach 
are given in Table 2.

For the weaning weight, the heritability estimates were 
the highest in Model 5, while similar results were obtained 
from the other models. It is underlined that only the values 
of highest posterior density (HPD) of additive genetic effect 
are seen in the region higher than zero in all the models. 
Hossein-Zadeh and Ardalan [38] supported  the view that 
if HPD is zero, related parameters are unimportant. The 
confidence intervals for additive genetic variances were 
above zero in all the models, suggesting that additive genetic 
effects may be important criteria in selection. In general, 
when the estimation of maternal heritability of the WW 
was examined, the lowest estimation values were obtained 
in Model 2. Both the low estimates of the ratio of maternal 
permanent environmental effects and the low confidence 
intervals of these effects in all models have revealed 
the negligible effects on selection. Genetic correlations 
between additive genetic effect and maternal effect for 
WW were negative and lower, almost zero, in Models 2 
and 5. This is an indication of antagonism between the 
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additive genetic effect and the maternal effect. Barbosa et 
al. [19] reported that the antagonist relationships between 
additive genetic effects and maternal genetic effects may be 
due to natural selection. Some researchers reported that, 
if maternal effects were not included in the model, they 
increased the estimations of additive genetic effects and, as 
a result, increased the value of heritability and decreased 
the efficiency of selection [9,39–41].  

According to the DIC values used as the model 
comparison criterion in MCMC algorithms, Model 2 was 
the best model and the results obtained from Model 2 
were very similar to Model 1.  However, in Model 2 the 
heritability of the maternal effect can be considered zero, 
and Model 1 shows similar results with fewer parameters, 
so Model 1 may be the most practical model. 

The number of related animals in this study was 107, 
and therefore there was little inbreeding in the whole 
population, which was computed as an average of 0.00328. 
The low rate of inbreeding, lower rate of dams with records 
in the population, and low number of progeny records per 
dam directly affected variance-covariance components 
and genetic parameter estimates. With this data structure, 
the results obtained from both methodologies (REML and 
MCMC) showed that the estimated genetic variances of the 
maternal effects were minimal. As a result, the maternal 
heritability was also very low.  The same case was valid for 
the variance of maternal permanent environmental effect. 
Therefore, it was concluded that maternal effects were not 
an important part of variance in this study or at least the 
data structure used was not suitable in Awassi lambs.

It has been emphasized in the literature that the impact 
of data structure was important in the estimation of 
variance-covariance components and genetic parameters 
in maternal models [9,42,43]. Gerstmayr [43] examined 
the change of maternal effects on simulated data and 
reported that maternal effects depend on the number of 
offspring per dam, the number of dams with records, and 
the number of generations. In this report, it was stated that 
if there were no dams with records, the genetic covariance 
could only be estimated by using the relationships between 
offspring, and the maternal heritability increased as the 
number of offspring records per dam increased. The low 
estimate obtained in our study could be due to the low 
number of dams and the low number of offspring per dam 
as reported by Gerstmayr [43]. Maniatis and Pollott [44] 
emphasized that pedigree information plays an important 
role in determining the maternal effects and essentially 
reported that the proportion of dams with records in 
the population should be high. Some researchers stated 
that the separation of maternal genetic and maternal 
permanent environmental variances depended on the 
existence of repeated yield records [43,44]. Therefore, 
close relationships between generations and relationships 

due to dams are needed to estimate maternal effects. In the 
present study, low genetic relationships are consistent with 
the results of the Maniatis and Pollott [44]. As a result, 
the findings obtained from heritability estimations from 
both REML and Bayesian methodologies under Model 1 
(simple animal model, Y = Xb + Za + e) were the same, 
and accordingly, the heritability of the weaning weight 
was moderate to high (0.35). Since maternal genetic and 
environmental variances in the models with maternal 
effects were negligible, the estimates of total heritability 
(h2

t) were not changed and were similar to direct 
heritability estimations (h2

d).
Okut et al. [45] obtained values ranging from –0.99 to 

0.99 for direct-maternal genetic correlation in their study. 
However, Synman et al. [46] in Merino lambs and Assan 
et al. [47] in Sabi lambs found a direct-maternal genetic 
correlation of 1.00, which was similar to our study (Models 
2 and 5). 

In this study, the value of direct heritability of WW was 
0.35, which is higher than the values of Aguirre et al. [48] 
in the Santa Ines (0.20), Hammoud and Salem [49] in the 
Barki (0.012) and in Rahmani (0.139), Kumar et al. [50] in 
Nellore (0.03), Mallick et al. [51] in Bharat Merino lamb 
(0.16), Jawasreh et al. [27] in Awassi (0.19), and Tariq et 
al. [28] in Mengali sheep (0.125); it is similar to the results 
of Kariuki et al. [52] in Dorper (0.28), Aksoy et al. [29] 
in Karayaka (0.27), Hassen et al. [30] in Awassi sheep in 
Ethiopia (0.33), Gamasaee et al. [53] in Mehraban (0.30), 
El-Wakil and Gad [31] in Barki (0.30), and Hassen et al. 
[30] in Nation (0.31); and it is lower than the values of El-
Awady et al. [54] in Rahmani (0.42) via Reml. In addition, 
the direct heritability of WW was estimated by Nassiri et 
al. [55] in Zandi lambs (0.169), Barbosa et al. [19] in Santa 
Ines (0.09), and Gowane et al. [18] in Malpura (0.40) using 
Bayesian methodology.

4. Conclusion
Maternal heritabilities and maternal permanent 
environmental effects close to zero as well as genetic 
correlations between direct and maternal effects also close 
to zero or 1.00, estimated with various statistical models, 
probably point to an inappropriate data structure. On the 
other hand, the simple models (Model 1 in both methods) 
provide relatively reliable estimates [29,30,52]. 

In the present study, when comparing Bayesian 
and REML approaches, both of the applied approaches 
performed identically for estimation of genetic parameters. 
Both methods indicated a high to moderate level of direct 
heritability of WW of Awassi lambs. It can be concluded 
that both approaches are suitable for estimation of genetic 
parameters in the case of low sample size. 

On the other hand, Bayesian analysis was much slower 
than REML analysis concerning computation time in this 
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research, like in other studies [56,57]. In this study, when 
comparing Bayesian and REML approaches in terms of 
models, for direct heritability using Model 1 and Model 
4, both approaches estimated similar values. However, 
in Model 2, the estimates of direct heritability from the 
Bayesian approach were higher than those from REML. 
In addition, the estimates of maternal heritability from the 
Bayesian approach were lower than estimates of maternal 
heritability from REML. As for Model 3, there was little 
difference between the two approaches for the estimates of 
direct heritability. In Model 5 and Model 6, the estimates 
of direct heritability from the Bayesian approach were 
higher than those from REML like in Model 2. 

Besides, in the presence of a wide range of biological 
problems, the Bayesian approaches provide flexibility 
through posterior condition distribution, even when 
data do not fit normal distribution. Considering these 
advantages of the Bayesian approach, it can be preferred. 
The results obtained from the models with the Bayesian 
approach were compatible with the results of the models 
with the classical (Berkeley, frequentist) approach. In this 
respect, it may be feasible to estimate variance-covariance 

components and genetic parameters with the Bayesian 
approach, which is increasingly popular.

As a result, we can speculate that if estimation of genetic 
parameters were to be carried out on records obtained from 
different farms, more than about 250–300 dams should be 
kept in these farms. Repeated records of farms that include 
high numbers of animals can increase the reliability of 
the estimated parameters. Increasing the number of 
generations in flock, variance components, and genetic 
parameter estimations can provide more meaningful 
results. A pedigree based on several generations would 
also provide the genetic connection of the farms, which 
prevents the confounding of genetic and farm effects.
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