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1. Introduction
Inadequate bone support for oral surgery and periodontal 
regeneration is a major problem for surgical applications. 
Additional graft materials are needed in dentistry to repair 
missing bone tissue. Currently, due to their osteogenic, 
osteoinductive, and osteoconductive effects, autogenous 
bone grafts are considered the gold standard under certain 
conditions [1]. However, other conditions, such as the 
presence of a second surgical site and the failure to obtain 
the desired amount of material, limit the use of autogenous 
bone grafts [2]. Because of this, many researchers have 
attempted to find an alternative to autografts. For instance, 
allografts have been used in dentistry for a long time. 
Allografts have osteoconductive and osteoinductive 
effects [3]. Regrettably, the devitalization process used to 
suppress the host immune response and prevent possible 
disease transmission in cadaveric allografts causes the loss 
of the mechanical, osteoinductive, and osteoconductive 
properties of the graft [4,5]. In addition, the maturation 
times of allografts are longer in defect regions than those 
of autografts [6,7]. 

Bone morphogenetic proteins (BMPs) are well known 
to induce osteogenic effects. Allografts typically contain 
BMPs that accelerate mesenchymal cell migration and 
attachment [3]. In both in vitro and in vivo studies of 
BMP-2, which is a type of BMP, the contribution of 
BMP-2 to ossification could be shown. BMP-2 promotes 
periodontal and bone regeneration in some animal models 
[8,9] and also induces differentiation of preosteoblast cells 
and thereby increases ossification [10,11]. Fundamentally, 
BMPs are types of growth factors and belong to the 
transforming growth factor (TGF-β) family [12]. There 
are variant BMPs that support bone regeneration, such 
as BMP-2, -4, -5, -6, and -7 [13]. Recombinant human 
bone morphogenetic protein-2 (rhBMP-2), generated by 
recombinant DNA technology from mammalian cells, is 
known to induce differentiation of osteoblasts at a cellular 
level and to induce osteogenesis in animal models [14]. 
Bone graft materials and osteoinductive agents have a 
synergistic effect [15]. The synergistic effect of BMPs and 
bone grafts on bone regeneration has been demonstrated 
in animal studies [11].
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In immunohistochemical studies, the type of 
biomarkers used is important for analyzing, imaging, and 
examining regeneration in the bone defect area [16]. For 
instance, osteocalcin (OC) is a strong marker of newly 
formed bone [17,18]. Osteonectin (ON) is a biological 
modulator and a known proliferative agent [19]. These 
biomarkers have been shown under various conditions to 
control bone cell differentiation and remodeling [20,21]. 
Osteopontin (OPN) is also a biomarker involved in the 
bone maturation and mineralization stages that occur after 
the accumulation and formation of a collagen network 
[22]. 

Osteoporosis is characterized by decreased bone 
volume and deterioration of bone cells and consequently 
causes bone fragility and fractures [23]. Osteoporosis 
and periodontitis mainly affect bone tissues [24]. 
Postmenopausal osteoporosis is a condition that occurs 10 
to 15 years after menopause and often leads to increases in 
alveolar bone resorption and promotes periodontal tissue 
degeneration [25]. Estrogens play an important role in 
both inflammation and skeletal repair and remodeling by 
regulating important mediators of immune function. At 
the same time, estrogen inhibits osteoclast secretion [26]. 
There is a close relationship between bone metabolism and 
estrogen deficiency in osteoporosis [27]. 

The objective of the current study was to evaluate the 
effect of allografts and externally applied rhBMP-2 on 
bone healing in experimentally generated defects in the 
calvarium of ovariectomized and nonovariectomized rats 
via histological and immunohistochemical assays.

2. Materials and methods  
2.1. Study design
A total of 42 female Wistar rats (250-300 g) provided by 
the Scientific Application and Research Center of Dicle 
University (Protocol No: 12-DH-53) were used. All the 
procedures described in the experimental protocols 
were approved by the Animal Ethics Committee of Dicle 
University (Protocol No: 2011/15, 29.03.2011). The 
study was performed in accordance with the Helsinki 
Declaration and with the permission of the Governmental 
Animal Protection Committee. The study was performed 
at the Dicle University Health Sciences and Research 
Center and the Faculty of Medicine Histology and 
Embryology Department. The weight changes in the 
rats were determined before sacrifice. The animals were 
given commercial rat chow and water ad libitum and 
were maintained on a 12-h light/12-h dark cycle at a 
temperature of 22 ± 1 °C. 

The rats used in the study were divided into two 
groups: the control (nonovariectomized rats were assigned 
as the control group) and the ovariectomized group, and 
each group was divided into three subgroups (n = 7). 

These comprised the following: the control group: C1, 
cranial empty defect; C2, defect with demineralized 
freeze-dried bone allografts (DFDBAs); and C3, defect 
with allograft and bone morphogenetic protein (BMP-2); 
and the ovariectomized group: O1, cranial empty defect; 
O2, defect with allograft; and O3, defect with allograft and 
BMP-2.
2.2. Surgical procedure
The 21 rats subjected to ovariectomy were intraperitoneally 
administered xylazine (3 mg/kg) and ketamine (35 mg/kg) 
and then ovariectomy was performed. According to the 
procedure recommended by Pires-Oliveira et al., between 
the middle of the dorsum and the tail base, a 3-cm-
long incision was made in the midline dorsal skin for 
ovariectomy [28]. The animals were observed for infection. 
At the end of day 30, all animals were anesthetized prior to 
the generation of the bone defects in the calvarial zone. 
After shaving the head hair, a longitudinal midsagittal 
incision was made in the skin to expose the parietal 
bones, and the flaps were retracted in the subperiosteal 
plane to expose the parietal bones. A 4-mm diameter full-
thickness critical-size cranial defect was made unilaterally 
in the parietal bone using a trephine dental drill and a 
physiodispenser with saline [29,30].

After the cranial defect was generated in the 
nonovariectomized group, the defects were left empty in 
group C1. DFDBAs (Raptos, Citagenix, Laval, QC, Canada) 
were placed in the defects in group C2, and the defects 
in group C3 were treated with allografts and rhBMP-2 
(produced in E. coli, Gibco, Frederick, MD, USA). The 
same experimental plan was used in the ovariectomized 
rats.  

After placement of the grafts, the flaps were sutured 
with 3/0 silk sutures. No infection or side effects were 
observed during the recovery period. Eight weeks after 
the calvarial surgery, all of the rats were sacrificed using an 
overdose of intraperitoneal ketamine hydrochloride prior 
to histological and immunohistochemical evaluation.
2.3. Preparation of the biomaterial
Considering the manufacturer’s recommendations and the 
dosage used in other studies, 10 μg of BMP was diluted 
to 0.2 mg/mL [31,32]. An equal amount of allograft was 
soaked with 12.5 µL of rh-BMP-2 solution before being 
placed in the defect site. 
2.4. Sample and histological process 
The operation area was extracted using a saw, remaining 
2 mm around each defect area. The samples were fixed 
in 10% neutral buffered formaldehyde solution for 48 h, 
and decalcified in 10% ethylenediaminetetraacetic acid 
(EDTA) prepared in 0.1 M Tris-HCl buffer (pH 7.4) for 
14 days. Subsequently, the specimens were dehydrated, 
cleared, and embedded in paraffin. Then 5-µm-thick serial 
sections were cut from the center of the bone defect. Four 
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slides were prepared from each sample and each slide 
contained a minimum of 3 sections that were at least 50-
µm apart. Three slides were used for immunohistochemical 
detection, and the other, stained by Gomori’s method (to 
determine ossification), was used for histological analysis.
2.5. Immunohistochemical staining
To perform the immunohistochemical analyses, the 
streptavidin–biotin–peroxidase method [33] was 
performed using the Zymed Histostain Plus Bulk Kit 
(code: 85-9043, Histostain Plus Bulk Kit, Zymed, South 
San Francisco, CA, USA). Sections were treated with 
3% H2O2 prepared in methanol for 15 min to block 
endogenous peroxidase activity after deparaffinization 
and rehydration and were washed with phosphate-
buffered saline (PBS). Antigen retrieval was performed in 
citrate buffer (0.01 M, pH 6.0) at 95 °C for 30 min, and 
the sections were allowed to cool before immunostaining. 
After they were washed twice in PBS for 5 min, the 
sections were treated with protein blocking solution (Ultra 
V Block) at room temperature for 5–10 min to block 
nonspecific staining. Then the sections were incubated 
with a mouse monoclonal antibody against OPN (Santa 
Cruz Biotechnology, sc-21742) and rabbit polyclonal 
antibodies against OC (Santa Cruz Biotechnology, sc-
30044) and ON (Santa Cruz Biotechnology, sc-25574) at 
a dilution of 1:200 for 20 h at 4 °C. After incubation, the 
sections were washed three times in PBS for 5 min, treated 
with biotinylated secondary antibody at room temperature 
for 20 min, and then washed three times in PBS for 5 min. 
The sections were incubated in streptavidin peroxidase 
solution for 20 min and washed three times in PBS for 5 
min. To visualize the reaction, the sections were treated 
with 3’3-diaminobenzidine (DAB) chromogen for 5–10 
min and counterstained with Mayer’s hematoxylin for 2–3 
min. Negative controls were used to ensure the accuracy of 

staining, and distilled water was used instead of primary 
antibodies in these controls. 

The intensity of the positive staining was defined as + 
weak, ++ medium, +++ strong, +/++ weak to moderate, 
or ++/+++ moderate to strong. The slides were examined 
and photographed using a Nikon Eclipse E400 microscope 
(Nikon, Tokyo, Japan) equipped with a digital camera 
(Nikon Coolpix-4500) (Table 1). 
2.6. Statistical evaluation
Kruskal–Wallis and Mann–Whitney U tests, which are 
nonparametric test methods, were used, and statistical 
analyses were considered significant for P < 0.05.

3. Results
3.1. Histological findings
At the fornix of the defect cavity in the C1 group, 
formations, such as spicules, that were associated with 
intramembranous ossification were observed. Fibrous 
tissue was also commonly observed in the cavity space 
and the presence of vascularization was noted (10×). For 
the ovariectomized group (O1), no intramembranous 
ossification was observed in the cavity and fibrous tissue 
was formed only at the fornix of the cavity and did not show 
a homogeneous distribution. In addition, vascularization 
was not intense in this group (10×).

In the C2 group, the presence of regular and common 
fibrous tissue in the defect area was noteworthy. It was also 
determined that vascularization showed a more regular 
structure (10×). The fibrous tissue around the bone graft 
was poorly formed and gaps between bone grafts were 
common in the ovariectomized group (O2). In addition, 
while the high abundance of cellular elements in the defect 
area was remarkable, vascularization was irregular (10×).

The findings obtained in the C3 group (4×) were 
similar to those in the C2 group described above. Likewise, 

Table 1. Staining intensity scores of OPN, OC, and ON immunoreactivity in the rat calvarium.

Extracellular matrix
OPN, OC, ON

Osteoprogenitor cells
OPN, OC, ON

Osteoblasts
OPN, OC, ON

Osteocytes
OPN, OC, ON

C1 +/++, +, + -, -, - +, +, - -, -, -
C2 ++, ++/+++, ++/+++ -, -, - ++, ++, ++ -, -, -
C3 ++, +++, +++ -, -, - ++, ++, ++ -, -, -
O1 -, +, + -, -, - -, +, - -, -, -
O2 +/++, +/++, ++ -, -, - ++, ++, ++ -, -, -
O3 +/++, ++, ++ -, -, - ++, ++, ++ -, -, -

OPN: Osteopontin, OC: Osteocalcin, ON: Osteonectin, C: Control group, C1: (Empty defect), C2: (Empty 
defect + graft), C3: (Empty defect + graft + BMP), O: Ovariectomized group, O1: (Empty defect), O2: 
(Empty defect + graft), O3: (Empty defect + graft + BMP), Staining intensity: +++ strong, ++ moderate, 
+ weak, - negative.
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the findings in the ovariectomized group (O3) and the 
O2 group were parallel. Additionally, addition of BMP to 
allografts had no effect in the C3 or O3 groups (Figure 1).
3.2. Immunohistochemical evaluation 
3.2.1. Osteopontin involvement
In the C1 group, osteoblast cells in the defect area showed 
low involvement of OPN, and the extracellular matrix 
also showed only low- to medium-level involvement of 
OPN. In addition, blood vessels in the defect area were 
stained (20×). OPN immunoreactivity was observed 
in normal bone tissue in the O1 group, whereas OPN 
immunoreactivity was observed only in blood vessels in 
defect areas (4×).

In the C2 group, OPN immunoreactivity was not 
observed in osteoprogenitor cells at the fornix of the 
defect cavity, but moderate OPN staining was observed 
in osteoblasts that formed around the bone graft. The 
extracellular matrix and blood vessels showed positive 
staining for OPN (4× and cropped image 40×). The 
findings in the O2 group were similar to those in the C2 
group, and the extracellular matrix around the bone graft 
showed remarkably strong OPN staining (4×).

Osteoprogenitor cells at the fornix of the defect area 
showed no OPN involvement in the C3 group. It was 
determined that the osteoblast cells that formed around the 
bone graft material had moderate OPN immunoreactivity 
and that fibrous tissue in the defect area was abundant and 
homogeneously distributed (10×). While the osteoblast 
cells that formed around the bone graft showed moderate 
staining, the extracellular matrix around the graft showed 
minimal staining (10×) (Figure 2). The comparisons of the 
parameters within the groups for OPN staining are shown 
in Table 2.  
3.2.2. Osteocalcin involvement
In the C1 group, OC involvement in osteoprogenitor 
cells was not observed, and OC showed weak staining in 
osteoblasts at the fornix of the defect cavity. It was also 
determined that the extracellular matrix was dense at 
the fornix of the defect cavity and that the vessels were 
positively stained with OC (20×). Similar findings were 
shown in the O1 group compared to the C1 group, and the 
only difference was that the staining in the extracellular 
matrix was not homogeneously distributed (20×).

In the C2 group, negative staining was observed in 
osteoprogenitor cells at the fornix of the defect area, 
but unlike the findings in the C1 group, osteoblasts that 
formed in the defect area showed moderate involvement. 
In addition, it was observed that the extracellular matrix 
and blood vessels were intensely stained both at the fornix 
of the defect area and within the defect (10×). In the O2 
group, in terms of OC, the extracellular matrix showed 
strong involvement at the fornix of the defect cavity, but 

the involvement in the defect area was weak and localized. 
While osteoprogenitor cells showed no reaction with 
OC, moderate OC immunoreactivity was detected in 
osteoblasts. In addition, blood vessels showed positive 
staining for OC (10×).

In the C3 group, no immunoreactivity was observed 
in osteoprogenitor cells except for those at the fornix 
of the cavity, but moderate involvement was observed 
in osteoblasts. In this group, it was observed that the 
extracellular matrix was stained more intensely in the 
defect area and especially around the bone graft, and 
blood vessels also positively stained for OC (10×). A lack 
of staining was observed in osteoprogenitor cells in the 
O3 group, and moderate involvement was observed in 
osteoblasts. There was staining in the extracellular matrix, 
both at the fornix of the defect cavity and within the defect 
area, but less staining was detected around the bone graft 
compared to that detected in the C3 group. In addition, 
apparent OC expression was observed in the blood vessels 
(10×) (Figure 3). The comparisons of the parameters 
within the groups for OC staining are shown in Table 3.  
3.2.3. Osteonectin involvement
In the C1 group, ON involvement in osteoprogenitor 
cells at the fornix of the defect and in osteoblasts in the 
defect cavity was not found. In addition, the staining of the 
extracellular matrix was weak, and blood vessels showed 
moderate ON immunoreactivity (10×). The O1 group 
showed results similar to those of the C1 group. 

In the C2 group, a lack of ON staining was observed in 
osteoprogenitor cells at the fornix of the defect area; unlike 
those in the C1 group, osteoblasts that formed in the defect 
area in the C2 group showed moderate ON staining. The 
extracellular matrix in the fornix of the defect area was 
intensely but not homogeneously stained in the cavity, and 
ON expression was also detected in the blood vessels (4× 
and cropped image 20×). The O2 group showed results 
similar to those of the C2 group, but the extracellular 
matrix was not intensely stained. 

In the C3 group, osteoprogenitor cells in the fornix of 
the defect area did not show ON expression, but moderate 
staining of osteoblasts that formed around the bone graft 
was observed. The extracellular matrix and blood vessels 
showed intense ON expression (10×). In the O3 group, 
while osteoprogenitor cells had no staining, which was 
similar to the results in the C3 group, osteoblast cells 
around the bone graft showed moderate ON staining. 
The extracellular matrix in the fornix of the defect area 
showed intense staining, but the staining was decreased 
inside the defect area. ON expression in the blood vessels 
was also observed (4×) (Figure 4). The comparisons of the 
parameters within the groups for ON staining are shown 
in Table 4.  



552

KADİROĞLU et al. / Turk J Vet Anim Sci

Figure 1. Histological analysis of defect areas in rat calvarial bone in the control (C1, C2, and C3) and ovariectomy (O1, O2, and O3) 
groups. The defects were empty as shown in C1 and O1 and defect areas were treated with bone grafts (C2, O2) and bone grafts + bmp 
(C3, O3). hb: host bone, fc: fibrous connective tissue, bg: bone graft, (*): interface between host bone and the defect, (▼): bone spicule. 
Scale bars: 100 µm (C1, C2, O1, and O2); 250 µm (C3 and O3). Gomori’s staining method.
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Figure 2. OPN expression in defect areas in rat calvarial bone in the control (C1, C2, and C3) and ovariectomy (O1, O2, and O3) groups. 
The formations in the groups are shown in the histochemical figure. hb: host bone, fc: fibrous connective tissue, bv: blood vessel, bg: 
bone graft, (*): interface between host bone and the defect, (▼): osteoblast. Scale bars: 50 µm (C1), 100 µm (C3 and O3), 250 µm (O1, 
O2, and C2; the magnification within the image is 25 µm).
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4. Discussion
The results suggest that the use of rhBMP-2 with allografts 
may increase bone regeneration in estrogen-deficient rats. 
Autografts are still acknowledged as the gold standard due 
to their osteogenic, osteoconductive, and osteoinductive 
properties. However, they have some disadvantages such as 
limited supply and donor site morbidity [34]. Allografts, 
which are produced as an alternative to autografts, are 
considered the gold standard for bone regeneration and are 
obtained from cadavers. Although allografts contain BMPs, 
they lose some of their effectiveness in preventing disease 
as a result of the sterilization procedure [4]. Bone graft 
materials such as allografts are used in bone regeneration 
in oral surgery and periodontology [35,36]. Many factors 
affect the effectiveness of the graft material, such as the 
type of graft and the growth factors, and living cells and 
vascularization in the graft material and defect area 
[37,38]. Additionally, the existence of osteoprogenitor cells 
in the defect area directly influences bone regeneration. 
Moreover, when these cells are triggered by growth factors 
and have adequate vascularization, bone regeneration 
occurs robustly [7,39]. rhBMP is a kind of TGF-β and was 
used to enhance new bone formation in the present study. 

A critical-size bone defect is defined as an intraosseous 
wound that will not heal itself completely without 
intervention [40,41]. In the present study, as in previous 
studies, the size of the critical-size defect was selected as 
4 mm [7,29]. Although it is difficult to compare human 
biology and animal biology, rats are frequently used to 
ensure the reproducibility of experiments and for studies 
that seek to attain a ‘proof of principle’ [18,42]. The rat 

calvarial site defect model is an excellent model for bone 
regeneration in the craniofacial region. As the calvarial site 
is stable, defects in this site are useful for the examination of 
histological and immunohistochemical parameters [18]. In 
the present study, the experiment period was determined 
as 8 weeks. This period was selected based on previous 
studies [43–45]. Akita et al. [29] and Dazai et al. [46] stated 
that endogenous bone healing was completed after 8 weeks.

Recently, the appropriate dosage of rhBMP has 
become controversial. A high BMP dosage could have 
negative consequences, such as osteolysis, hematoma, 
and ectopic bone formation, and these could be caused by 
disproportionate growth of osteoblasts [47–49]. Moreover, 
Kimelman Bleich et al. claimed that even using sequestered 
BMPs can cause osteolysis [50]. Additionally, the results 
of a study carried out by Abdala et al. with different doses 
of rhBMP (1, 3, 5, and 7 µg) showed that there were no 
significant differences in new bone formation in rat 
calvarial defects [51]. Pelaez et al. added different amounts 
of rhBMP-2 to graft materials and examined the effect on 
the amount of new bone. It was found that a dose greater 
than 2.5 µg had no effect on new bone formation [43]. By 
considering the presence of BMP in the allograft and based 
on the results of the studies mentioned above, the dosage 
of rhBMP was selected as 0.2 mg/mL in the present study.

According to the immunohistochemical results of our 
study, the OC, OPN, and ON staining results in osteoblasts, 
osteocytes, the extracellular matrix, and osteoprogenitor 
cells were similar among the groups, and rhBMP-2 had 
no effect on ossification or immunological staining in 
either the nonovariectomized or ovariectomized groups. 

Table 2. Semiquantitative analysis of the parameters for osteopontin in calvaria. P < 0.05.

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) C1

0.0269 1

7 7.57 (2)
(2) C2 7 15.14 (1)
(3) C3 7 10.29 ns
(1) C1

0.0064 3

7 5.43 (2)(3)
(2) C2 7 14.14 (1)
(3) C3 7 13.43 (1)

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) O1

0.0004 1

7 5.00 (2)(3)
(2) O2 7 17.29 (1)(3)
(3) O3 7 10.71 (1)(2)
(1) O1

0.0004 3

7 4.00 (2)(3)
(2) O2 7 14.00 (1)
(3) O3 7 15.00 (1)

Parameters: 1, extracellular matrix; 2, osteoprogenitor cells; 3, osteoblasts; 4, osteocytes. 
ns: nonsignificant (P > 0.05) Since average ranks of parameters 2 and 4 were equal, no significant difference 
could be established (average rank = 11.00).
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Figure 3. OC expression in defect areas in rat calvarial bone in the control (C1, C2, and C3) and ovariectomy (O1, O2, and O3) groups. 
The formations in the groups are shown in the histochemical figure. hb: host bone, fc: fibrous connective tissue, bv: blood vessel, bg: 
bone graft, (*): interface between host bone and defect, (▼): osteoblast. Scale bars: 50 µm (C1 and O1), 100 µm (C2, C3, O2, and O3).
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Ishigaki et al. revealed that OC staining of osteoblasts was 
weak in the graft group [52]. Ivanovski et al. observed that 
OC staining of osteoblasts and osteocytes was strong in 
the graft group [53]. Another study showed that osteocyte 
staining was moderate in both the ovariectomized and 
nonovariectomized groups [54]. In the present study, OC 
staining of osteoblasts was moderate, and no staining of 
osteocytes was observed in either the ovariectomized or 
nonovariectomized groups. ON staining of osteocytes was 
not observed in the ovariectomized or nonovariectomized 
groups in our study, and the ON staining of osteoblasts 
was moderate. The results of studies by Tera et al. [52] 
and Ishigaki et al. [54] were similar to those of our 
study. In the literature, many immunohistochemical and 
histological studies have shown that rhBMP-2 is effective 
in increasing new bone formation [18,31,40,55–57]. Cheng 
et al. showed that BMP-2 did not produce a statistically 
significant difference in bone volume in an experimental 
study in rats. They also argued that the use of allografts in 
combination with BMP-2 did not achieve the full repair of 
defects [58]. Koerner et al. showed that some adverse side 
effects of rhBMP-2 were increased inflammatory reactions 
and the expression of inflammatory cytokines [59]. When 
histological and immunohistochemical studies of BMP in 
the literature were examined, it was found that BMP was 
used with different growth factors and agents to prevent 
the side effects mentioned above. For instance, Lee et al. 
reported that the use of BMP and FGF-2 together with 
biphasic calcium phosphate (BCP) in an animal model 
increased periodontal tissue regeneration and was more 

successful than BCP used with BMP-2 alone. The BMP-2 
+ BCP results at the end of 4 weeks were better than the 
BMP-2 + FGF-2 + BCP results, whereas the BMP-2 + FGF-2 
+ BCP group results were better at the end of 8 weeks [11]. 
Similarly, Sharmin et al. reported that the combination of 
vascular endothelial growth factor and BMP was superior 
to BMP-2 alone [60]. 

Although estrogen is the primary sex hormone in 
women, it plays a crucial role in bone regeneration and 
homeostasis in both women and men [26]. Estrogen 
deficiency leads to both early and late osteoporosis in 
postmenopausal women and increases the occurrence of 
osteoporosis in older men [61]. Ovariectomy is considered 
the most common method to induce osteopenia [54]. 
Similar to the results of the study by Tera et al. [54], 
the immunohistochemical markers did not show any 
alterations due to osteopenia. Several animal studies 
have shown delayed bone repair effects similar to those 
observed in the present study [62–64]. Fuegl et al. stated 
that the enhancement of bone formation was minimal in 
ovariectomized rats [65]. In another study, it was shown 
that the amount of newly formed bone was small and that 
bone formation was slow [66]. Durão et al. correspondingly 
indicated that the rate of new bone formation was slow 
[67]. Song et al. reported that bone resorption in the 
ovariectomized rat cortical tibial area started at the end of 
the eighth week, and bone formation was not observed at 
the end of the fourth week [68]. In a study conducted by 
Yang et al., bone formation occurred at the twelfth week in 
ovariectomized rats [69].  

Table 3. Semiquantitative analysis of the parameters for osteocalcin in rat calvaria. P < 0.05.

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) C1

0.0848 1

7 7.93 ns
(2) C2 7 13.21 ns
(3) C3 7 11.86 ns
(1) C1

0.0007 3

7 4.36 (2)(3)
(2) C2 7 13.71 (1)
(3) C3 7 14.93 (1)

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) O1

0.5134 1

7 11.00 ns
(2) O2 7 9.50 ns
(3) O3 7 12.50 ns
(1) O1

0.0026 3

7 5.07 (2)(3)
(2) O2 7 15.00 (1)
(3) O3 7 12.93 (1)

Parameters: 1, extracellular matrix; 2, osteoprogenitor cells; 3, osteoblasts; 4, osteocytes.
ns: nonsignificant (P > 0.05) Since average ranks of parameters 2 and 4 were equal, no significant difference 
could be established (average rank = 11.00).
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Figure 4. ON expression in defect areas in rat calvarial bone in the control (C1, C2, and C3) and ovariectomy (O1, O2, and O3) groups. 
The formations in the groups are shown in the histochemical figure. hb: host bone, fc: fibrous connective tissue, bv: blood vessel, bg: 
bone graft, (*): interface between host bone and defect, (▼): osteoblast. Scale bars: 100 µm (C1, C3, O1, and O2), 250 µm (O3 and C2; 
the magnification within the image is 25 µm).
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It is known that regeneration in the calvarial region 
can be more difficult to induce than regeneration in 
the tibial region. In a previous study, it was shown that 
experimentally created defects in the calvarial region 
may lead to insufficient supply of blood vessels and a lack 
of osteoprogenitor cells. Thus, it has been claimed that 
calvarial defects result in a poor osteogenic response and 
a challenging recovery environment during the evaluation 
of therapeutic agents [65]. In the present study, considering 
the weak effect of BMPs and above all the lack of estrogen, 
the poor conditions in the calvarial region and the loss of 
periosteum were considered to have a negative effect on 
bone healing.

In conclusion, in both the control and ovariectomized 
groups, although there was an improvement in terms of 
the production of fibrous tissue in the allograft groups, no 
ossification areas were observed in the defects treated with 
allografts/allografts + BMPs. In addition, the control group 

showed a more positive result for fibrous tissue compared 
to the ovariectomy group. In addition, OPN, OC, and 
ON were expressed in the matrix and osteoblasts in areas 
where ossification was expected, but bone formation was 
not sufficient. Further studies are necessary to investigate 
the use of bone regeneration biomaterials in estrogen 
deficiency conditions. 
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Table 4. Semiquantitative analysis of the parameters for osteonectin in rat calvaria. P < 0.05.

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) C1

0.0004 1

7 4.00 (2)(3)
(2) C2 7 13.50 (1)
(3) C3 7 15.50 (1)
(1) C1

0.0002 3

7 4.00 (2)(3)
(2) C2 7 14.50 (1)
(3) C3 7 14.50 (1)

Groups P Parameters n Average rank Different (P < 0.05) from groups

(1) O1

0.0013 1

7 4.71 (2)(3)
(2) O2 7 13.71 (1)
(3) O3 7 14.57 (1)
(1) O1

0.0004 3

7 4.00 (2)(3)
(2) O2 7 14.50 (1)
(3) O3 7 14.50 (1)

Parameters: 1, extracellular matrix; 2, osteoprogenitor cells; 3, osteoblasts; 4, osteocytes. 
Since average ranks of parameters 2 and 4 were equal, no significant difference could be established (average 
rank = 11.00).
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