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1. Introduction
Body weight (BW) is an important heritable phenotype 
and related to other functional and productional traits in 
cattle [1]. Previous studies have reported positive genetic 
correlations between milk yield and BW [2]. [1] predicted 
longitudinal genetic correlations between BW and other 
functional traits, including dry matter intake and milking 
speed over days. Heritability estimates of BW ranged from 
0.32 to 0.61 [2,3] while estimates of BW change over the 
range from 0.10 to 0.34 [4,5]. Furthermore, BW plays 
critical role in fertility- and survival-related phenotypes [2]. 

The past decade has seen an increase in emphasis on 
genome-wide association studies (GWAS) for detecting 
single nucleotide polymorphisms (SNPs) associated with 
quantitative phenotypes. There is a growing body of 
literature that recognizes the importance of assumptions 
for underlying genetic structure of the phenotypes for the 
GWAS. The common model of choice, the single regression 
model (SRM) [6], assumes the existence of major gene(s) 
in association with phenotype. While an SRM is useful for 
detecting major genes, it does have drawbacks regarding 
multiple hypothesis testing, disregarded correlations 
among SNPs, and low power to detect genes with small 
effects [7]. [8] assumed a small correlation in gene effects 
for human height and was able to more thoroughly explain 

the much higher genomic variance when compared with 
the SRM [9]. Since then, many other studies using this 
model or other multi-locus Bayesian models were done to 
investigate genetic structure of phenotypes [10–12].

Prediction of phenotypes using across-breed GWAS 
information [genomic prediction, (GP)] is an also 
important research area but has received less attention 
from the community [13]. Prediction accuracy will 
depend on genetic structure of the trait [14,15]; hence, 
the assumptions for the size of gene effects, number of 
genes, experiment/testing population sizes and linkage 
disequilibrium define which statistical model should 
be used in practice. Studies of [16] and [17] showed 
the importance of marker preselection and/or marker 
densities for degree of GP accuracy across breeds. It has 
been demonstrated by [18,19] that ancestral relationships 
within and between experiment (training) and test datasets 
result in different prediction accuracies in both within and 
between GPs. [20] studied the presence of effect of large 
quantitative trait locus (QTL) in the reference set for the 
across-breed GP. It can therefore be assumed that common 
ancestors and the presence of large quantitative trait locus 
(QTL) in the experiment and testing populations might 
lead to higher genomic prediction accuracy in across-
breed GPs.
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By using SRM and multiple hypothesis testing 
procedures in Siberian cattle populations, [21] identified 
several major QTLs associated with BW. Their findings 
further support the idea of common ancestors in Siberian 
cattle populations. Both populations were found to be 
related and were in Siberia for several decades [21]. 
Understanding the link between major genes and common 
ancestors within and between the breeds will contribute 
to a deeper understanding of GP across breeds. The main 
aim of the present study was two-fold: (1) to examine 
genetic structure and to detect associated SNPs for BW 
using various single and multiple locus genomic models 
and (2) genomic prediction of BW using Siberian cattle 
populations based on across-breed genomic information 
[21]. 

2. Material and methods
2.1. Materials
BW for 174 genotyped animals (150 Hereford with 92 
dams and 58 bulls and 24 Kazakh with 4 dams and 20 bulls) 
from the Siberian regions were obtained from [21]. Single 
nucleotide polymorphisms (SNPs) were genotyped using 
a GGP HD150K array as described by [21]. Unannotated 
SNPs and sex chromosomes were removed. SNPs were 
removed from the data if the call rate was < 90%, minor 
allele frequency < 5%, and Hardy Weinberg equilibrium (P 
< 10–6). Finally, 107,550 SNPs were collected for statistical 
analyses of the genotypes. Details of the published dataset 
can be found in [21].
2.2. Methods
[22] showed the genomic relationship between Kazakh and 
Hereford breeds. However, there are certain drawbacks 
associated with the use of admixed populations in 
GWAS. Due to the effect of common ancestors in the two 
populations, genetic stratification needs to be taken into 
account in order to avoid false positive results. We used a 
linear mixed model to take into account the effects of the 
admixture as was implemented in GenABEL [23] using 
GWAS with a mixed model and regression (GRAMMAR-
Gamma) [23,24] approach in R software [25].  

The linear mixed model can be expressed by the 
equation:

y = Xb + Za + e (1)
in which y contains the number of observations, b is 

the breed and square root of age effects, a is the additive 
genetic effect, matrices X and Z are incidence matrices, 
and e is a vector containing residuals. 
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For the random effects, it is assumed that A is the 
coefficient of coancestry obtained from genotype of 
animals, I is an identity matrix, and 2 and 2

e are the 

additive genetic and residual variances, respectively. The 
use of genomic principal components for correcting a 
population stratification has a relatively long tradition in 
GWAS. [26] suggested using principal components for 
detection and correction of population admixture in a 
linear mixed model (1). We used the approach of [26] for 
GWAS as was implemented in GenABEL [23] based on 
the highest genomic loadings. However, there are certain 
drawbacks associated with the use of GWAS p values 
without correcting for the number of hypothesis tests. The 
main disadvantage of a huge number of hypothesis is an 
inflated number of false positive genomic signals [9]. One 
advantage of the false discovery rate (FDR) approach is 
avoidance of the problem of false positive genomic signals 
by increasing significance levels to 0.05/number of SNPs. 
However, interval-based methods can be more useful for 
identifying and taking into account linkage disequilibrium 
for GWAS p values over correlated SNPs [27]. In his 
article, [27] described a truncated product method (TPM) 
for combining test statistics over chromosomal locations 
of SNPs using different window sizes.

[28] used sparse and larger variances to model SNPs 
effects as “Bayesian sparse linear mixed models” (BSLMM). 
[28] used a mixture of two normal distributions and 
additional random effects to yield a more flexible model 
compared with other Bayesian models.

We used BSLMM for prediction of SNP effects: 

𝑦𝑦" = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎𝑏𝑏 + ∑ ,𝑧𝑧".𝑎𝑎.𝛿𝛿.0 + 𝑏𝑏"1
.23   

 

  (2)
in which yi is the phenotypes of the ith animal, zij is 

an indicator variable (small or major effects from the two 
normal distributions) for the ith animal, jth SNP locus and 
kth allel, aj is marker of locus effects, δj indicates whether 
SNP has an effect (or not), and ei is the residual for animal i. 
To determine whether the various assumptions regarding 
genetic structure of the body weight gave different 
results, the number of mixtures were increased. BayesR 
[29] assumed a mixture of four normal distributions for 
predictions of SNP effects (assumed to be 0.00001, 0.0001, 
0.001, and 0.01 genetic variances) in model (2). For each 
phenotype, the Markov Chain Monte Carlo (MCMC) 
algorithm was run for 1.000.000 samples, and the first 2000 
samples were discarded as burn in period. We collected 
each tenth sample from each realization of the MCMC as 
the thinning period. 

One of the most well-known models for assessing 
polygenic effects in GP is the use of a genomic relationship 
matrix in (1) in which a refers to animals termed as genomic 
best linear unbiased prediction (GBLUP) [30]. We used 
GBLUP, BayesR, and BSLMM for prediction of Kazakh 
phenotypes using Hereford genotypes based on their 
breeding values (BV) or small gen effects (ALPHA) [28]. 
The whole genomic dataset was partitioned by Hereford 
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and Kazakh sets (reference and validation, respectively). 
BW measurements of the Kazakh breed in the validation 
set were assumed to be missing. Phenotypes of the Kazakh 
breed were predicted with the information from the 
Hereford breed in the reference set. A random sample of 
reference set (2/3 of the Hereford animals, n = 105) was 
used to create predictive equations. This procedure was 
repeated 10 times. The correlation coefficient between the 
predicted and realized phenotypes of the Kazakh animals 
was calculated over 10 replications.

3. Results
The mean autosomal heterozygosity for SNPs was 
estimated as 0.3877 (0.1109). Mean identity by state for 
the animals was estimated as 0.3890 (0.0197). Genomic 
heritability was found to be 0.2115.

The first set of investigations aimed to interrogate SNP 
existence in association with BW by single SNP regression 
models. A major problem with the GWAS is the presence 
of genotypic clusters (or population stratification). The 
results obtained from the genomic principal component 
analysis of genotypes detected breed specific clusters 
(results are not shown). We used genomic relationship 
matrix (GRAMMAR-Gamma), genomic principal 
components (EGSCORE), and a Bayesian linear mixed 
model (BSLMM) for correcting population stratification 
in regression models. Tables 1–3 show an overview of 
the association results based on the genomic models. 
After taking the multiple hypothesis correction due to 
huge number of hypothesis in GWAS into account, FDR-
corrected P values were also calculated (results not shown). 
No SNPs were significant after FDR correction. 

The second aim of this study was to investigate the 
usefulness of GP with additional information from 
ancestrally-related Siberian cattle populations and 
presence of major genes for BW. Recent developments in 

the field of GP have led to a renewed interest in genetic 
structure of the phenotypes. A much-debated hypothesis is 
whether BW could be explained by genes with small and/
or major genes in GP. To this end, we used different GP 
models for taking into account various genetic structures 
for BW (Table 4). Table 4 compares Pearson’s correlation 
coefficients for within and between GP using different 
models. On average, within-breed GPs were shown to have 
low correlations coefficients (Table 4). A closer inspection 
of Table 4 shows that GBLUP_ALPHA predicted the 
highest correlation of 0.3373 for the across-breed GP.

4. Discussion 
The first set of analyses examined the impact of major genes 
on BW using single SNP regression models. The results of 
the GRAMMAR, EGSCORE, and BSLMM analyses are 
presented in Tables 1–3. A comparison of the Tables 1–3 
reveals that statistically significant results were obtained 
from chromosomes 1, 2, 5, 12, and 20. Strong genomic 
signals from chromosome 5 were found using all of the 
GWAS models. Interestingly, a significant genomic signal 
on chromosome 1 was observed based on the results of 
the Bayesian model (Table 3). Prior studies have noted the 
importance of multiple hypothesis testing procedures in 
GWAS for reducing false positive findings [7,9]. A strong 
relationship between number of hypothesis (SNPs) and 
false positives has been reported in the literature [31]. All 
of the SNPs in Tables 1–3 turned out to be insignificant 
after applying the FDR control (P > 0.05). One of the most 
significant current discussions in multiple hypothesis 
testing correction is the linkage disequilibrium effects of 
adjacent SNPs on the test statistics [32]. We used TPM 
to correct for dependency among adjacent SNPs over 
genomic locations based on windows sizes of 2, 4, and 6. 
Strong evidence of genomic signaling from chromosome 
5 at the vicinity of base pair 106,987,567 was found by 

Table 1. Summary of GRAMMAR-Gamma model.

SNP Chromosome Position Chi-square P-value

Hapmap38028-BTA-122265 12 2058297 17.5334 2.82E-05
BovineHD2000011846 20 41207894 15.9122 6.63E-05
BovineHD0500030494 5 106294449 15.3161 9.09E-05
ARS-BFGL-NGS-106674 5 106296860 15.3161 9.09E-05
BovineHD0500030342 5 105647645 15.0857 0.000103
BovineHD0500030763 5 106987567 14.8007 0.000119
BovineHD0500000856 5 3365443 14.7395 0.000123
BovineHD4100004048 5 106888999 14.7118 0.000125
ARS-BFGL-NGS-107504 2 27505377 14.6287 0.000131
BovineHD0500030501 5 106329896 14.5855 0.000134
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TPM at windows size of 2 [–log(P)=6.48e-10]. This finding 
is consistent with those of other studies that reported a 
weight gain gene CCND2 at the same genomic location 
[2,21,33]. Estimation of the proportion of genetic variance 
explained by detected SNPs found to be around 13% based 
on the Bayesian model.

To assess within-Hereford breed prediction accuracy, 
a 10-fold cross validation was used. Table 4 presents the 
correlation among the four different GP methods. Overall, 
cross validation found differences in correlations within 
GP due to small sampling size (range from –0.00204 to 
0.2230 for BSLMM_1DD, for instance). In Table 4, we can 
see that BSLMM_2alfa resulted in the highest correlation 
values of 0.0614 for within-breed GP. On average, Bayesian 
models were shown to have a higher correlation when 
compared with the other models for within-breed GP 
(Table 4). These results reflect those of [34], who also 
found that 0.06 correlations of Hereford within GP using 

yearling weight. However, our results differ from that of 
[34]’s estimate of within-GP Hereford correlation of 0.42 
obtained for weaning weight. A possible explanation 
for this discrepancy might be due to differences among 
genetic structure of the phenotypes between current and 
studies by [34]. In addition possible sources of sampling 
error (due to small sampling size) could also have affected 
the results of the current study.

Across-GP results in Table 4 are revealing in several 
ways. It can be seen in Table 4 that across-breed GPs 
resulted in much higher GPs when compared with the 
within-breed GP. On average GBLUP models were shown 
to have higher correlations compared with the other 
models for the across-breed GP. It has previously been 
observed that across-breed GP with GBLUP accuracies 
was around 0 [17]. Interestingly, Table 4 shows that the 
GBLUP_alpha resulted in the highest accuracy (0.3373). 
These results corroborate the ideas of [20, 35] in which 

Table 3. Summary of BSLMM model.

SNP Chromosome Position Regression 
coefficient P-value

Hapmap38028-BTA-122265 12 2058297 36.0748 5.78E-06
BovineHD2000011846 20 41207894 -74.2981 4.2E-05
ARS-BFGL-NGS-107504 2 27505377 40.6875 5.15E-05
BovineHD0500030494 5 106294449 52.8970 5.66E-05
ARS-BFGL-NGS-106674 5 106296860 52.8970 5.66E-05
BovineHD0500030342 5 105647645 45.4067 7.26E-05
BovineHD0500000856 5 3365443 -34.050 7.55E-05
BovineHD0500030763 5 106987567 40.6463 7.93E-05
Hapmap54019-rs29023016 1 156538750 -41.541 8.12E-05
BovineHD0500030501 5 106329896 51.3744 9.29E-05

Table 2. Summary of EGSCORE model.

SNP Chromosome Position Chi-square P-value

Hapmap38028-BTA-122265 12 2058297 18.8547 1.41E-05
BovineHD2000011846 20 41207894 18.2927 1.89E-05
BovineHD0500030711 5 106905471 17.8554 2.38E-05
BovineHD0500030727 5 106938388 17.8554 2.38E-05
BovineHD0500030728 5 106939259 17.8554 2.38E-05
BovineHD0500030730 5 106941930 17.8554 2.38E-05
BovineHD0500030494 5 106294449 17.7094 2.57E-05
ARS-BFGL-NGS-106674 5 106296860 17.7094 2.57E-05
BovineHD0500030693 5 106857445 17.6240 2.69E-05
BovineHD0500030763 5 106987567 17.2323 3.31E-05
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the presence and use of QTL information in across-breed 
GP was demonstrated. In addition, comparisons of the 
findings with others [18,19] confirm the effects of common 
ancestors on the across-breed GP. 

The main goal of the current study was to determine the 
effects of the QTL and presence of common ancestors for 
the within- and across-GP BW in cattle. The most obvious 
finding to emerge from this study is the increase in across-
GP accuracy when QTL segregation in both correlated 
populations occurs. These findings have significant 
implications for the understanding of the way in which 
common ancestors and/or presence of QTL might affect 
the accuracy of the GP results.
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Table 4. Pearson correlations of genomic predictions obtained by 
different models.

Method Within breed 
genomic prediction

Across breed 
genomic prediction

BayesR 0.0574 0.2589
BSLMM_BV 0.0482 0.3138
GBLUP_BV 0.0297 0.3359
BSLMM_ALPHA 0.0614 0.3251
GBLUP_ALPHA 0.0298 0.3373
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