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1. Introduction
Salmonella is an important pathogen which causes major 
foodborne bacterial outbreaks in the population [1]. The 
most significant symptom is infectious diarrhea caused 
by Salmonella, enterotoxigenic Escherichia coli (ETEC), 
coronavirus, rotavirus, and Cryptosporidium parvum 
[2]. Salmonella enterica subsp. enterica colonizes the 
digestive tract of cattle and calves, and this infection 
is particularly prevalent in the first 3 months of age [3]. 
Salmonella infection is also observed in buffaloes and 
camels [4]. The major source of infection is asymptomatic 
adult animals; up to 5% of recovered animals may transfer 
this organism with their feces. S. enterica subsp. enterica 
comprises more than 2600 serovars, which may cause 
systemic infections characterized by diarrhea, septicemia, 
and various clinical symptoms [5]. It is essential to know 
the serovar types that are commonly isolated from the 
target region, as these serovars can vary depending on the 
geographical region and different sources [6]. In previous 
studies, it has been reported that different serovars were 
isolated from humans and animals [7–12]. Phages have 
been isolated from various sources [13–18], and can be 
displayed in the infectious cycle as different types. Virulent 
phages replicate exclusively using lytic cycles [19]. Lytic 
bacteriophages are highly bactericidal, possessing several 

characteristics known as autodosing and specificity. Such 
specificity also limits the ability of nontargeted bacterial 
cells to select specific phage resistance mechanisms, in 
contrast to antibiotics [20,21]. Therefore, it is presumed 
that bacteriophages can be used alone or in combination 
with antibiotics to treat bacterial infections without 
negative effects on human or animal cells [22]. Tailed 
bacteriophages, named Caudovirales, have a common 
origin and constitute an order with 3 families and 3 types 
of lysogeny: phages lambda, Mu, and P1 [23]. Salmonella 
bacteriophages are defined in the National Center for 
Biotechnology Information (NCBI) Gen Bank [24,25].

In the present study, we aimed to obtain bacteriophages 
from calf, dairy cow, buffalo, and camel feces to genotype 
them based on their protein profiles, and to detect the 
cross-lytic activities of phages for S. Kentucky, S.Anatum, 
and S.Muenchen serovars.

2. Materials and methods 
2.1. Bacterial strains used in the study
All feces included in this study were collected from 
clinically or subclinically infected animals. This research 
was approved by the Ethics Committee of the Faculty of 
Veterinary Medicine at the Selçuk University in Konya, 
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Turkey. These samples were sent to the laboratory under 
cold-chain conditions. A total of 869 fecal samples (437 
calves, 287 dairy cows, 100 buffalo, and 45 camels) were 
collected from 21 dairy farms located in 5 regions (Aegean, 
Black Sea, central Anatolia, Marmara, southeastern 
Anatolia) in Turkey between April 2012 and March 2014. 
In a previous study, a total of 40 (4.60%) Salmonella strains 
were obtained from (38.09%) of the 21 farms [9]. (Table 1). 
2.2. Characterization, concentration, and isolation of 
bacteriophages
For the bacteriophage positive control, the ΦSP–3 lytic 
phage was isolated from the intestinal contents of broiler 
chickens, as described previously [26, 27]. The Salmonella 
phages were obtained through 2 methods: a direct 
procedure and phage enrichment with a host-specific 
Salmonella bacteria by a modified double-layered agarose 
method. For direct isolation, aliquots of samples were 
mixed at a 1:10 ratio with salt magnesium (SM) buffer (50 
mM Tris-HCl [pH: 7.5], 0.1 M NaCl, 8 mM MgSO4), then 
it was filtrated followed by a two-step process through a 
0.45-mm bottle top filter and a 0. 2-mm syringe-attached 
filter. This filtrate of 4 mL of 0.7% nutrient agar (NA) 
was tempered to 55°C and the mixture was poured into 
Petri dishes with a bottom layer of 1.5% TSA, followed by 
incubation at 37°C. For phage enrichment, aliquots of the 
same samples used for direct isolation were mixed at a 1:10 
ratio with NA broth followed by addition of 1 mL of the host 
strain. It was incubated at 37°C for 16 h, then treated with 
the modified double-layered agarose method [28] (Table 
1). The culture supernatants were concentrated at 7500× g 
for 15 min using an ultrafiltration unit with a MWCO of 
10 kDaVivaspin® 20 (Sartorius, Göttingen, Germany) [24]. 
The presence of bacteriophages was investigated using the 
freeze-drying method for scanning electron microscopy 
(SEM) [29]. Protein amounts of the concentrated lysates 
were measured using the Pierce BCA Protein Assay Kit 
(Thermo Fisher Scientific, Waltham, MA, USA).
2.3. Determination of multiplicity of infection (MOI) 
Determination of multiplicity of infection (MOI) was 
defined as the ratio of virus particles to the potential host 
cells. Briefly, the host strain in the early phase was cultured 
in NA broth at 30 °C. The concentrated phage stocks were 
serially diluted two-fold (21, 22, 23, 24, 25, 26, and 27), and 
2 mg/mL standardized protein and sterile distilled water 
were prepared for the control. To determine the phage 
titer, triplicate samples were collected from each MOI set 
[30]. 
2.4. Characterization of bacteriophage lysis profiles of 
different hosts 
The lysis activity of each of the 16 bacteriophage isolates 
was evaluated in both the specific host and other hosts. 
The cross-lytic activity of phages was determined as it 
was presumed that the structure of the isolates might 

change due to differences in the serotype, source, region, 
and year. Initially, the lysis activity of bacteriophages was 
standardized in their host, and then their activities were 
determined in other hosts. For this purpose, a modified 
double-layered agarose method was used, as described 
previously [31]. 
2.5. Bacteriophage typing
Phage DNA extraction was carried out using the Phage 
DNA Isolation Kit (Norgen Biotek, Thorold, ON, Canada), 
as previously described [31]. To identify the conserved 
stretches of the major capsid genes and ΦSP‐1 with 
ΦSP‐3 types of Salmonellaphages, 5 primers were used 
in this study. The presence of major capsid genes was 
investigated by PCR as described previously [32]. In the 
present study, specific primers were used for identifying 
ΦSP1 and ΦSP3 phages via PCR., We designed specific 
primers using the NCBI primer program according 
to the data for ΦSP-1 (GenBank Accession number 
JQ638925.1) and ΦSP-3 (GenBank Accession number 
JQ638926.1) in NCBI. The specificity of the primers 
was confirmed using the Basic Local Alignment Search 
Tool (BLAST) program. All PCRs were prepared with 
5 μL 5× FIREPol®Master Mix (Solis Biodyne, Tartu, 
Estonia), DNA template (100 ng/μL), 20 pmol of each 
primer (SP1F 5’CGCTGCAAACTATCAGGCAC‘3, 
SP1R 5’CTTGACCGTACCAACCCAGG’3, 
SP3F 5’AACACTCAAACCTGCACCGT’3, SP3R 
5’GGTGTTGAGATCCTGCGCT’3), and 1 μL water 
(negative control). The PCR was performed with an initial 
denaturation at 94°C for 5 min, followed by 30 cycles (94°C 
for 1 min, 60°C for 1 min, 72°C for 1 min), and a final 
extension at 72°C for 10 min. Amplification products were 
separated by 2% agarose gel electrophoresis and stained 
with ethidium bromide. A 1-kb DNA ladder (Thermo 
Scientific, SM0313) and 100 bp (Thermo Scientific, 
15628019) were used for comparison of DNA sizes. 

The protein profiles of the concentrated positive 
control and 16 bacteriophages’ structural proteins were 
analyzed by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) as described previously [33]. 
Protein Ladder (Thermo Scientific, 26634) was used to 
determine the molecular weights of the sample bands [34].

3. Results
3.1. Lytic activity of bacteriophages 
For calculating the MOI, 2.5 × 104 bacterial cells were 
detected for each of the 16 bacteriophages and positive 
control, whereas the effective protein amount of 
bacteriophage changed according to lytic titers. The MOI 
of the most effective S. Kentucky bacteriophage was 79.11 
μg/mL, whereas that of the most ineffective S. Muenchen 
bacteriophage was 1.142 μg/μL. It was determined that 
there might be differences in the lytic activities of each of 
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Table 1. Phages types obtained from Salmonella serovars and serotype isolated from different regions of Turkey.

Farm Year Source Region Sample Farm Number of phage isolates obtained on host strains representing serovar and serotypes (%) Total phage 
isolates

Kentucky
(8,20:i:z6)

Typhimurium
(1,4,[5],12:i:1,2)

Anatum
(3,10,[15],[15,34]:
e,h:1,6)

Muenchen
(6,8:d:1,2)

Enteritidis
(1, 9,12: g,m:-)

Abony
(1,4,[5],12,27:
b:e,n,x)

Gaminara
(16:d:1,7)

Muenster
(3,10[15][15,34]:
e,h:1,5)

1 2012 Calf M 34 0 0 0 0 0 0 0 0 0 0

2 2012 Dairy cow C 23 0 0 0 0 0 0 0 0 0 0

3 2012 Calf C 115 19 19 0 0 0 0 0 0 0 13/19

4 2012 Dairy cow C 35 1 0 0 1 0 0 0 0 0 1/1

5 2012 Dairy cow C 63 0 0 0 0 0 0 0 0 0 0

6 2012 Dairy cow C 12 0 0 0 0 0 0 0 0 0 0

7 2012 Dairy cow C 16 0 0 0 0 0 0 0 0 0 0

8 2013 Calf C 40 0 0 0 0 0 0 0 0 0 0

9 2013 Dairy cow C 16 0 0 0 0 0 0 0 0 0 1/3

10 2013 Dairy cow C 30 0 0 0 0 0 0 0 0 0 0

11 2013 Dairy cow C 57 3 3 0 0 0 0 0 0 0 0

12 2013 Calf S 24 5 0 0 0 5 0 0 0 0 1/5

13 2013 Dairy cow C 22 0 0 0 0 0 0 0 0 0 0

14 2013 Calf C 25 0 0 0 0 0 0 0 0 0 0

15 2013 Buffalo C 100 1 1 0 0 0 0 0 0 0 0

16 2013 Calf C 28 3 0 0 3 0 0 0 0 0 0

17 2013 Dairy cow B 13 0 0 0 0 0 0 0 0 0 0

18 2013 Calf C 102 7 0 1 0 0 1 0 4 1 0

19 2014 Calf C 30 0 0 0 0 0 0 0 0 0 0

20 2014 Camel A 45 1 0 0 0 0 0 1 0 0 0

21 2014 Calf C 39 0 0 0 0 0 0 0 4 0 0

Total 869 40 23 1 4 5 1 1 4 1 16

M: Mediterranean; C: Central Anatolia Region; B: Blacksea; A: Aegean
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the 14 S. Kentucky bacteriophages, despite them having 
the same serovar. These calves had diarrhea as a clinical 
finding, in contrast to the dairy cows. According to the 
cross-lytic activity of the phages, the most effective phages 
were 2S. Kentucky phages obtained from calf feces; their 
activity was 100% effective against all phage hosts. S. 
Muenchen phage activity (18.75%) was lower than that of 
other phages’ activity (Tables 1 and 2). 
3.2. Bacteriophage typing 
The presence and morphology of the positive control 
were investigated via SEM (Figure 1). The 16 phage and 
positive control DNA extractions were determined to be 
ΦSP3 because products of 163 bp were obtained via PCR. 
According to the SDS-PAGE results, all 17 Salmonella 
bacteriophages exhibited between ~10 kDa and 70kDa. 
The 2 main groups were determined by cluster analysis. 
Group I comprised the positive control and 11 isolates 
(1, 4, 6, and 8–15), with a similarity of group of at least 
50%. High percentages of phages were distinguished 
based on the origin of the serovar that were found in the 
same cluster (subgroup A of cluster I), 75%, (n = 6) for S. 
Kentucky phages obtained from calf feces, and 12.5% (n = 
1) for S. Muenchenphages obtained from calf feces (Figure 
2). The phages 2, 3, 7, 16 were placed in group A of cluster 
II, which had a similarity of group of at least 60%, but only 
S.Muenchen phage 5 was placed in group B of cluster II. 
Jaccard’s coefficient of similarity was determined to be 

0.825 by unweighted pair group method with arithmetic 
mean, and Hunter-Gaston discriminatory index was 
calculated to be 0.825.

4. Discussion
In general, studies on the distribution of Salmonella 
infection have been reported in calves, dairy cows, and 
poultry samples [8]. There are many factors such as 
acquisition of immunity to the predominant serovars, 
genetic adaptation to hosts of specific serovars, and 
management interventions [35,36]. Numerous studies 
are available about the use of bacteriophages against 
infections caused by different bacteria, such as therapeutic 
applications, activity, and protection [37]; however, broad-
host-range bacteriophages are the major limitation for 
phage therapy because of their cross-interaction and 
further lysis of the microbiota [38]. There is a need for 
the determination of bacteriophage lysis profiles for 
determining the bacteriophage–host relationship because 
it provides useful information for phage-based control 
of Salmonella serovars predominant in different sources. 
It was reported that bacteriophages present the highest 
lysis ability against S. Enteritidis and S. Typhimurium 
obtained from various farm animals [39]. Dueñas et al. 
[40] obtained 45 phages; the majority were isolated with 
the S. Enteritidis host (64.4%), followed by S. Heidelberg 
(20%), S.Typhimurium (8.9%), and S. Infantis (6.7%).

Figure 1. The investigating of positive control by scanning electron microscope (SEM). EHT: 
extra high tension, Mag, Magnification; WD, Waddel Diameter; SE1: Secondary Electron; 
Signal A, Emitted Electrons
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In this study, the diversity and presence of Salmonella 
bacteriophages were investigated in fecal samples collected 
from calves, dairy cows, buffalos, and camels in farms with 
unknown history of Salmonella isolation. Bacteriophages 
were obtained from calves and dairy cows in contrast 
to those from buffalo and camel farms because it was 
presumed that Salmonella infection has rarely occurred in 
buffalo or camel farms in Turkey [9]. 

Salmonella bacteriophages are generally host-specific 
or possess only 1 serovar; however, there are several reports 
on phages that productively infect a range of bacterial 
species, crossing the genus barrier [4]. It was determined 
that the lytic activity rate of ΦSP3 bacteriophages was 
higher in their host, and the lytic activities and cross-
activity of S. Kentucky ΦSP3 bacteriophages were higher 
than those of the other serovars in contrast to the S. 
Muenchen bacteriophage. In addition, these S. Kentucky 
bacteriophages, which have the highest lytic activity (2, 3, 
7, and 16 with sample numbers), were detected as group A 
of cluster II, although only the S. Muenchen bacteriophage 
phage was found in group B of cluster II (Figure 2). In 
particular, it was determined that S. Kentucky was the 
dominant serovar in our country (Table 1), and it was 
presumed that S. Kentucky might prevent the growth 

of S. Enteritidis, S. Gaminara, S. Typhimurium, and S. 
Muester through its bacteriophage (Table 2). There can be 
differences in the bacteriophage host range depending on 
the prevention of adsorption by modification of the resistant 
bacterial system, bacterial receptor mutations [41]. It was 
assumed that there might also be differences in phage type 
and effectiveness due to shifts in the predominant serovars. 
In general, bacteriophages have been characterized 
using transmission electron microscopy (TEM) over the 
years according to ΦSP1 and ΦSP3 types; however, any 
structural details are not shown by TEM, although this 
technique is commonly used for enumerating viruses from 
the environment [24,42]. Therefore, it has been assumed 
that molecular techniques have been useful in the typing 
of bacteriophages. 

In conclusion, the S. Kentucky bacteriophage has a 
larger host range owing to its high lytic and cross-lytic 
activity. It was determined that there might be differences 
in the lytic activities of each bacteriophage, despite having 
the same serovar, and that calf feces are the most important 
sources for obtaining Salmonella bacteriophages. There is 
insufficient data about the typing and efficiency of lytic 
bacteriophages in Turkey. These results may be used in the 
control of Salmonella infection in farm animals.

Figure 2. Similarity analysis of the profiles produced by SDS-PAGE cluster analysis. It was shown 
in the X (rescaled distance cluster combine) and Y (the numbers representing bacteriophages) 
axis. S. Anatum, 290; S. Muenchen, 502; S. Kentucky, 118-76-477-486-492-108-117-490-112-
484-80-476-491-487; 1–16, Bacteriophage isolates: 17, PC, Positive Control.
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Table 2. The determining of the lysis activity of each one of sixteen bacteriophage isolates by both in their host and in other hosts.

Culture →
Phage titers ↓ 118 290 76 502 477 486 492 108 117 490 112 484 80 476 491 487 MOI** Lytic activity rate (%)

118* 1/128
(27)

1/16
(24)

1/64
(26)

1/32
(25) - 1/32

(25)
1/64
(26)

1/64
(26) - 1/32

(25)
1/32
(25) - - 1/64

(26)
1/64
(26) - 142.65 μg/μL

1/14.02 (23.81) 11/16 (68.75%)

290* 1/32
(25)

1/128
(27)

1/32
(25)

1/16
(24)

1/4
(22 )

1/32
(25)

1/32
(25)

1/16
(24) - 1/8

(23) - - - 1/32
(25)

1/8
(23) - 250 μg/μL

1/8 (23 ) 11/16 (68.75%) 

76* - - 1/64
(26) - - - - 1/32

(25) - - 1/64
(26)

1/16
(24) - - - - 809.7 μg/μL

1/  2.47 (21.31) 4/16 (25%)

502* - - - 1/32
(25) - - 1/8

(23) - - 1/32
(25) - - - - - - 1.142 μg/μL

1/ 1.75 (20.81) 3/16 (18.75%)

477* 1/16
(24) - - - 1/32

(25) - - - 1/8
(23) - 1/32

(25)
1/8
(23)

1/8
(23) - - - 743.49 μg/μL

1/ 2.69 (21.43) 6/16 (37.5%)

486* 1/32
(25)

1/16
(24)

1/32
(25)

1/32
(25)

1/16
(24)

1/64
(26)

1/64
(26)

1/16
(24)

1/8
(23)

1/32
(25)

1/16
(24)

1/64
(26) - 1/16

(24)
1/32
(25)

1/16
(24)

79.11 μg/μL
 1/ 25.28 (24.66) 15/16 (93.75%)

492* - - - - 1/16
(24) - 1/32

(25) - 1/64
(26) - - - 1/16

(24) - - - 884.95 μg/μL
1/ 2.26 (21.18) 4/16 (25%)

108* 1/32
(25)

1/16
(24)

1/32
(25)

1/8
(23)

1/32
(25)

1/8
(23)

1/32
(25)

1/64
(26)

1/16
(24)

1/32
(25)

1/16
(24)

1/64
(26)

1/16
(24)

1/16
(24)

1/32
(25)

1/16
(24)

105.15 μg/μL
1/19.02 (24.25) 16/16 (100%)

117* 1/32
(25)

¼
(22)

1/64
(26)

1/16
(24) - 1/8

(23) - - 1/32
(25) - - 1/16

(24)
1/32
(25) - 1/64

(26)
1/16
(24)

297.61 μg/μL
1/ 6.72 (22.75) 10/16 (62.5%)

490* 1/8
(23) - - - - - 1/64

(26)
1/16
(24) - 1/32

(25) - - - - 1/16
(24) - 775.19 μg/μL

1/ 2.58 (21.37) 5/16 (31.25%)

112* - - - - 1/32
(25) - - - 1/16

(24) - 1/64
(26) - - - - 1/32

(25)
843.88 μg/μL
1/2.37  (21.25) 4/16 (25%)

484* - 1/8
(23) - - - - 1/16

(24) - 1/16
(24) - - 1/32

(25) - - - - 1000 μg/μL
1/ 2 (21) 4/16 (25%)

80* - - - - 1/32
(25) - 1/8

(23) - - - - 1/8
(23)

1/32
(25 ) - - - 1000 μg/μL

1/ 2 (21) 4/16 (25%)

476* 1/16
(24)

1/4
(22 )

1/16
(24)

1/16
(24) - 1/8

(23)
1/16
(24)

1/32
(25) - 1/32

(25) - - - 1/32
(25 )

1/16
(24)

1/32
(25)

285.3 μg/μL
1/ 7.01 (22.81) 11/16 (68.75%)

491* 1/16
(24) - 1/64

(26) - 1/16
(24)

1/64
(26)

1/64
(26)

1/16
(24) - 1/32

(25)
1/16
(24)

1/16
(24)

1/32
(25)

1/16
(24)

1/32
(25)

1/8
(23)

148.69 μg/μL
1/13.45 (23.75) 13/16 (81.25%)

487* 1/32
(25)

1/16
(24)

1/32
(25)

1/8
(23)

1/8
(23)

1/16
(24)

1/16
(24)

1/16
(24)

1/64
(26)

1/16
(24)

1/8
(23)

1/16
(24)

1/32
(25)

1/16
(24)

1/32
(25)

1/32
(25)

105.15 μg/μL
1/19.02 (24.25) 16/16 (100%)

Positive 
control

1/32
(25) - 1/16

(24) - - 1/32
(25) - 1/32

(25)
1/64
(26) - 1/8

(23)
1/32
(25)

1/16
(24) - 1/64

(26)
1/32
(25)

250 μg/μL
1/8 (23 ) 16/16 (62.5%)

Negative 
control - - - - - - - - - - - - - - - - 0 0/16 (0%)

*S. Anatum; 290, S. Muenchen, 502; S. Kentucky, 118-76-477-486-492-108-117-490-112-484-80-476-491-487
** For 16 bacteriophages, the 2 mg/mL standardised protein were used for calculating of multiplicity of infection (MOI).
MOI =    2000 μg/μL
the average lytic value
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