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1. Introduction
In order to obtain more and higher-quality yields from 
animal materials which are of great importance in nutrition, 
the environmental conditions and genetic structure of 
animals should be improved [1,2]. Since the level of the yield 
that can be achieved by improving environmental conditions 
is only to the extent that the genotype will allow, it is highly 
important to carry out breeding studies to increase the 
genotypic value provided that appropriate environmental 
conditions are met. There are many methods to estimate the 
genotypic values.

Today, best linear unbiased prediction (BLUP) method is 
the most useful method for breeding studies with pedigree 
information and phenotypic properties. In the 1950s, 
Henderson developed and introduced the BLUP method to 
estimate the breeding values of animals. However, this term 
began to be used after the 1960s. Thanks to the increasing 
computer technology, the actual use of the BLUP method 
has taken its final status since the 1980s with the addition 
of an animal model. Thanks to BLUP method, which allows 
simultaneous estimation of breeding value and fixed factors, 
an estimated breeding value is calculated [3], it is made 
possible to sort the animals according to their estimated 
genetic potentials, and faster genetic progression is achieved 
through generations with more accurate selection results [4].

Recent years, with the development of molecular 
genetics, have been dominated by the expectation (in 
terms of animal husbandry and product varieties) that the 
information at the DNA level will lead to a faster genetic 
gain than the information which is obtained based solely 
on phenotypic data [5]. 

The identification of an intermittent map of genetic 
markers has enabled the detection of some quantitative 
trait loci (QTL) [6]. The inclusion of marker information 
in the BLUP-derived breeder values was suggested by 
Fernando and Grossman [7] and was predicted to provide 
extra genetic gain by 8–38% [8]. However, the ideal 
method for estimating the breeding value from genomic 
data is to calculate the conditional average of the breeding 
value of the animal considering the genotype in each QTL. 
This conditional average can only be calculated using 
the predistribution of QTL effects. Therefore, it can only 
form part of the research to implement genomic selection. 
In practice, since more sequence and single nucleotide 
polymorphisms (SNP) data are obtained by using marker 
genotypes instead of QTL genotypes, it may be considered 
to approach the ideal result by genomic selection in the 
estimation of breeding value [9].

Genomic selection methods that emerged with the 
development of molecular genetics and statistics together 
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with the presence of high-density panels of SNP markers 
and new perspectives for marker-assisted selection 
applications are being used widely in breeding studies 
[10]. Meuwissen and Goddard [8] have developed a way to 
combine large-scale DNA information available in animal 
model theory to estimate genomic breeding values [4].

With this theory, instead of using a limited number of 
marker information belonging to individuals, the breeding 
value obtained by using the information belonging to all 
the markers in the genome has been named as genomic 
estimated breeding value (GEBV) [5,11,12]. To calculate 
GEBV, a prediction equation based on SNP is first 
obtained. The animal genome from data estimated from 
the population whose phenotypes and genotypes are 
known is divided into small pieces. Thus, the effect levels 
of all loci contributing to the genetic variation in the 
investigated properties are obtained and used even if their 
individual effects are very small. In subsequent generations, 
individuals are genotyped to determine in which region 
of the chromosome they carry markers. Then, GEBVs are 
calculated by summing the effects of the regions in which 
the individuals carry the markers [13,14]. This improved 
technique allows selecting individual animals genomically.

The expression “genomic selection” is used for selection 
made according to the GEBVs of the animals [5]. In 
genomic selection, parameter estimates obtained by using 
a population in which genetic marker and phenotypic 
values   are available (training population) are also used to 
estimate breeding values   of individuals in the population 
with only marker information (test population) [5,12].

Genomic breeding value estimates can be obtained 
in two ways: directly and indirectly. In direct methods, 
genomic breeding value estimations can be obtained 
in one step with mixed equation models of individuals 
whose phenotypes and genotypes are known. In indirect 
methods, firstly, marker effects are estimated with the help 
of a training population, and breeding values   estimates 
can be obtained only with marker effects in the population 
with genotype information and the population in which 
selection will be made [12,13,15]. Three methods are used 
to estimate genomic breeding value: ordinary least square 
(OLS), BLUP, and Bayesian. Due to the low amount of 
data and the high number of markers, OLS method is not 
preferred. Of these methods, the most commonly used are 
BLUP (GBLUP) and Bayes (A, B, C, Cpi). According to the 
literature review conducted, the majority of the studies are 
based on data obtained by simulation, and more studies 
with real data are needed.

The aim of this study was to compare the marker effects 
obtained from training populations of different sample 
sizes with the estimation of genomic breeding values   of the 
test population for various methods that are preferred the 
most (Bayes A, Bayes B, Bayes C, Bayes Cpi, and GBLUP). 
Thus, the study aimed to determine which one or more of 

the methods mentioned in different sample sizes can make 
more reliable genomic breeding value estimation with real 
data.

2. Materials and methods
2.1. Materials
In this study, the total of partial milk yield (PMY) records 
(phenotype) obtained daily up to 158th day, pedigree, 
and 50K single nucleotide polymorphism (54609 SNP) 
genotype records from 400 Holstein dairy cattle reared in 
a private enterprise in the United States were used.
2.2. Methods
In order to make breeding value estimates with BLUP 
method, it was determined that of the existing animals, 78 
had mother PMY records. Therefore, it was decided to use 
78 animals as test population. In addition, to determine the 
effect of the sample size of the training population on the 
accuracy of the methods, 40 animals were chosen out of 78 
animals randomly, and 360 training - 40 test population 
and 322 training - 78 test population were formed. In the 
BLUP method, analyses were performed assuming that 
there were no PMY records (missing values) of the animals 
in the test population. SPSS statistical program was used 
to determine the environmental factors (lactation order, 
calving season, calving year, and milking period-covariate) 
that affect PMY. Bonferroni multiple comparison test 
was used to compare the subgroups of the factors that 
were found statistically significant. The calving season 
was taken into consideration in the calendar season. In 
determining lactation order, 1st, 2nd and 3rd lactations 
were taken individually, and 4th and later lactations were 
included in the 4th lactation due to the small number 
of observations. Variance components of PMY, genetic 
parameters, and estimation of phenotypic breeding value 
were analyzed according to the individual animal model 
using the MTDFREML package [16] program.

The model used to investigate the effect of 
environmental factors is given below:

Yijkl = µ + αi + βj + γk + b(Xijkl - X
-) + eijkl

In equality: Yijkl; observed value of the PMY, µ; 
population means, αi; i. effect of lactation order, βj; j. effect 
of calving season, γk; k. effect of calving year, b; constant 
regression coefficient for days in milk, Xijkl; in the ijk 
subgroup, l. cow milking time, X-; average milking time of 
population, eijkl; random error.

The model used to estimate variance components and 
breeding values is given below:

Yijklm = Fijkl + am + eijklm
In equality: Yijklm; observed value of the PMY, Fijkl; 

constant environmental factors (αi+βj+γk+b1A), b1A; direct 
effect of milking time on milk yield, am; additive gene effect 
of the animal: a ~ N (0, σ2

α), eijklm; random error: e ~ N (0, 
σ2

e).
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The following general model presented by Gianola et al. 
[17] was used to calculate the marker effects and genomic 
breeding values using the GBLUP (Bayes C0) and Bayesian 
methods (Bayes A, Bayes B, Bayes C, and Bayes Cpi).

y = Xs + Cβ + Wα + e
In equation: y; phenotypic vector, X; incidence matrix 

for constant effects (in the simplest case, the overall mean 
is reduced to a vector with elements 1), s; constant effects 
vector, C; covariate design matrix, β; covariate effect 
vector, W; a known matrix of numerical genotype scores 
for each marker (–10, 0, 10 for AA, AB, BB respectively), 
α; marker additive effects vector. e; random error vector: e 
~ N(0, Iσ2

e).
In another and more detailed illustration, the statistical 

model for the marker-based methods with polygenic 
effects is as follows:

𝑦𝑦 = 𝜇𝜇1% + 𝑿𝑿𝑿𝑿 + 𝑪𝑪𝑪𝑪 ++𝑋𝑋-𝛼𝛼-𝛿𝛿- + 𝑍𝑍𝑍𝑍
-

+ 𝒆𝒆 

Here y is an N × 1 vector of phenotypes with N being 
the numbers of individuals, μ is the overall mean, 1n is a 
vector of ones of length n, X is an incidence matrix for 
constant effects (lactation order, calving season, calving 
year), s is a constant effects vector, C is a covariate design 
matrix, β is a covariate effect vector, Xj is an N×1 vector 
of genotypes at SNP j, coded (-10, 0, 10), αj is the random 
allele substitution effect for SNP j, δj is a 0/1-indicator 
variable which equals 1 if SNP j is included in the model 
and zero otherwise, Z is the associated design matrix, u is 
a vector with random polygenic effects of all individuals 
with Var(u) = Aσ2

u, (A is the numerator relationship 
matrix, and σ2

u is the polygenic variance), and e is a vector 
of random residuals e ~ N (0, Iσ2

e).
In the Bayes A method, all δj = 1 so that all markers fit 

in the model. The prior distribution of marker substitution 
effect αj is normal N (0, σ2

αj
), and the prior distribution 

for marker variance σ2
αj

 is a scaled inverse chi-square 
distribution. The prior distribution of the error variance 
is σ2

e.
The distribution of SNP follows a Student’s 

t-distribution. This allows for a higher probability of 
moderate to large SNP effects than a normal distribution.

In reality, the distribution of genetic variances across 
loci is such that there are many loci with no genetic 
variance (not segregating) and a few with genetic variance. 
However, the prior density of method Bayes A does not 
have a density peak at σ2

gj
 = 0, which is infinitesimal. 

Method Bayes B, therefore, uses a prior that has a high 
density π at σ2

gj
 = 0 and has an inverted chi-square 

distribution for σ2
gj

 > 0 [5].
In Bayes A and Bayes B, there is only one additional 

degree of freedom compared with its prior, and so the 
shrinkage of SNP effects is largely dependent on the 
scale parameter, S. To overcome this limitation, proposed 

method is Bayes C, which involves estimating a single 
variance that is common to all SNPs, thereby reducing the 
influence of the scale parameter. In Bayes C, π is treated 
as an unknown, and it is assumed that it has Uniform 
distribution with mean = 0 and variance = 1.

In Bayes Cpi, marker effects on phenotypic traits were 
sampled from a mixture of null and normal distributions. 
The markers in the model shared a common variance σ2

α 
and the probability π that markers do not have a genetic 
effect. In Bayes C, there is the implicit assumption that the 
probability, π > 0, i.e. a SNP has zero effect, is regarded 
as known. The shrinkage of SNP effects is affected by π 
and should be estimated from the data and proposed 
Bayes Cpi, which incorporates this estimation step. Thus, 
compared to Bayes C, the additional feature of Bayes Cpi is 
estimating π from the data [10].

Method G-BLUP fitted all SNPs in the model, assuming 
that every SNP explained an equal proportion of the total 
genetic variance. This method can be named as Bayes C0 
for executive simplicity. It is the same as the Bayes C when 
pi = 0 [18].

In order to determine the accuracy of methods for 
estimating genomic breeding value indirectly, marker 
effects were determined by using phenotypic and 
genotypic recordings of 322 and 360 animals (training 
population) out of 400 animals. Next, estimated genomic 
breeding values   were obtained by using only the genotypic 
recordings of the 78 and 40 animals in the first lactation, 
by using the marker effects of the training population. 

Given the estimates of the marker effects and the 
marker genotypes, genomic estimated breeding values 
(GEBV) for the individuals in the test population set are 
predicted as: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =&𝑧𝑧()

*

)+,

α.) 

where GEBV is the GEBV for individual i in the test 
population dataset, k is the number of marker (54609), zij 
is the marker genotype of individual i for marker j, and ^αj 
is the posterior mean effect of marker j.

In simulation studies, the correlation between direct 
breeding value (DBV) and true breeding values   (TBV) 
is used to represent the accuracy of the DBV. However, 
TBV is not available in the field data, and response 
variable (phenotype recordings, estimated breeding value, 
deregressed estimated breeding value, etc.) is generally 
used to obtain DBV and the accuracy of DBV [19]. The 
relationship between genomic and pedigree-based breeding 
values   obtained using different methods was determined 
by Pearson correlation. In addition, the accuracy of the 
methods was calculated by Pearson correlation between 
PMY and genomic and pedigree-based breeding values. 
The deviation coefficients of the methods were found as 
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linear regression coefficient of genomic and pedigree-
based breeding values   on PMY. In the implementation of 
Bayesian methods (Bayes A, Bayes B, Bayes C, Bayes Cpi, 
and Bayes C0 (GBLUP)), the GenSel package program 
running online under the Cy-Verse cyber infrastructure 
web interface Discovery Environment was used1. In the 
study, Markov chain was run for 50,000 iterations of Gibbs 
sampling, the optimization was achieved successfully, and 
it was thought that the deviation of the first 5000 iterations 
was burn; thus, they were ignored and excluded from the 
experiment [20]. Due to the monomorphic structure in 
the genes, some markers (6497 and 6435) for different 
population sizes (322 and 360) were excluded from the 
analysis.

For correlation and regression analysis, SPSS package 
program was used. Mantel test was used to determine 
whether there was a difference between similarity matrices 
obtained using different methods and different sample 
sizes and analysis was performed in XLSTAT package 
program. The difference between the obtained correlation 
coefficients was tested online by Fisher Z transformation2.

3. Results and discussion
This section includes results obtained related to indirect 
genomic estimated breeding values. The animals with a 
training population of 400 were divided into two different 
groups as the training population (n = 322 and 360) and 
the test population (n = 78 and 40). While obtaining 
the pedigree-based breeding values, PMY records of the 
animals in the test population were considered as missing 
observations (0.0), and the estimated breeding values   
were obtained from related pedigree records. In genomic 
selection, indirect estimation of the breeding value was 
made in two steps. In the first step, genomic estimated 
breeding values   were obtained as indirect breeding value 
estimation, while marker values   of the training population 
were determined by correlating them with PMY records. 
In the second step, the marker values   obtained from the 
training population and the marker values   of the animals 
in the test population were correlated, and the breeding 
value estimates were obtained without considering PMY 
records. Method accuracy was determined by checking 
Pearson correlation coefficient (r(f*ŷ)) between the estimated 
breeding value (BV) and PMY. In addition, the linear 
regression coefficient of the breeding value on PMY was 
calculated, and the deviations of the methods (b(f*ŷ)) were 
determined.

Descriptive statistics of PMYs according to lactation 
order for different training population sizes are given 
in Table 1. According to the results of variance analysis 
for training population sizes 322 and 360, the effect of 
1 https://de.cyverse.org/de/
2 https://www.psychometrica.de/correlation.html

lactation order on PMY was significant. The highest PMY 
was observed in animals in lactation 4 and above, whereas 
the lowest PMY was found in animals in lactation 1.

Descriptive statistics of PMYs of animals of different 
size training populations according to their calving years 
are given in Table 2. According to the results of the variance 
analysis, the effect of the calving years on PMY was not 
significant for the sizes of different training populations 
(P > 0.05). It can be said that the determined values   are 
reliable in terms of variation.

Descriptive statistics of PMYs of animals of different 
size training populations according to calving season are 
given in Table 3.

According to the results of the variance analysis, the 
effect of calving season on PMY was not significant for 
the sizes of different training populations (P > 0.05). It can 
be said that the determined values   are reliable in terms of 
variation.

Genetic variance, error variance, total variance, 
heritability, and calculation times related to pedigree and 
genomic breeding values   obtained using different methods 
for different numbers of training populations are presented 
in Table 4. In the estimation of genomic breeding values, 
for initial values   to be used for genetic variance and error 
variance, the results estimated from pedigree-based 
breeding values were used. Since monomorphic structure 
was observed in 6497 markers of the group 360 with a 
training population size of 322 and 6435 markers of the 
group with the estimation of genomic breeding values with 
a training population size of 360, analyses were performed 
on 48,112 and 48,174 markers.

When Table 4 is examined, it can be observed that, 
in terms of heritability, for both training populations, 
the highest degree of heritability was found with BLUP, 
Bayes A, Bayes B, and Bayes C methods, while the lowest 
degree of heritability was found with Bayes Cpi method. 
It may result from the fact that Bayes Cpi is estimating 
π from the data. Degree of heritability obtained from 
training population size 322 was found to be higher when 
compared with that of training population size 360. When 
the literature was reviewed, estimates of heritability for 
milk yield in Holstein Friesian cattle were estimated as 
0.07 by Abubakar et al. [21] and as 0.13 by Kim et al. [22]. 
Accordingly, they were found to be lower than the highest 
heritability obtained. Some studies have found values   of 
heritability similar to the one obtained, and reported 
degree of heritability was in parallel with what the 
following names reported: Cañón et al. [23] 0.17, Saatçi 
et al. [24] 0.16, and Ertuğrul et al. [25] 0.16. It was found 
that in most of the other studies, the degree of heritability 
for milk yield was estimated to be between 0.19 and 0.45 
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[26–30]. When the calculation times of marker effects are 
examined, it can be seen that they differ between 1079 s 
and 3177 s; and while calculation time lasted the longest 
with Bayes A method, it was found to last the shortest with 
Bayes C method. 

Correlations between breeding values   calculated using 
different methods for different test population sizes (78: 
lower diagonal; 40: upper diagonal) are given in Table 5. 
As a result of the analysis, it was determined that breeding 
values   obtained by BLUP and Bayes C methods had higher 

Table 3. Descriptive statistics of PMYs according to calving season.

Calving
season n

322
n

360

X̄ ± SX̄ CV (%) X̄ ± SX̄ CV(%)

Autumn 76 6920.5 ± 143.18 18.04 83 6818.2 ± 138.28 18.48
Winter 81 6406.6 ± 126.82 17.82 94 6327.5 ± 114.03 17.47
Spring 81 6566.4 ± 150.80 20.67 85 6513.4 ± 146.16 20.69
Summer 84 6863.1 ± 128.19 17.12 98 6653.1 ± 127.90 19.03
P 0.167 0.147
b 40.033 (P < 0.001) 40.596 (P < 0.001)

b: Correction coefficient and significance level for different milking times; P:Significance level; PMY: 
Partial milk yield; X–: Mean; SX–: Standard Error; CV(%): Coefficient of variation; n: Number of animals

Table 1. Descriptive statistics of PMYs according to lactation order.

Lactation 
Order n

322
n

360

X̄ ± SX̄ CV (%) X̄ ± SX̄ CV (%)

1 148 5812.0 ± 66.26c 13.87 186 5770.1 ± 59.85c 14.15
2 83 7142.9 ± 116.80b 14.90 83 7142.9 ± 116.80b 14.90
3 49 7609.9 ± 148.53ab 13.66 49 7609.9 ± 148.53ab 13.66
≥4 42 7794.2 ± 138.93a 11.55 42 7794.2 ± 138.93a 11.55
P <0.001 <0.001
b 40.033 (P < 0.001) 40.596 (P < 0.001)

b: Correction coefficient and significance level for different milking time; P: Significance level; a,b,c: There 
is a difference between the means indicated by different letters in the same column; PMY: Partial milk 
yield; X–: Mean; SX–: Standard error; CV(%): Coefficient of variation; n: Number of animals

Table 2. Descriptive statistics of PMYs according to years of calving.

Calving
years n

322
n

360

X̄ ± SX̄ CV (%) X̄ ± SX̄ CV%)

2008 143 7028.0 ± 67.41 17.39 148 6980.5 ± 102.74 17.91
2009 139 6524.7 ± 90.26 19.32 165 6382.3 ± 96.64 19.45
2010 40 6033.5 ± 164.39 14.17 47 5960.7 ± 123.34 14.19
P 0.430 0.257
b 40.033 (P < 0.001) 40.596 (P < 0.001)

b: Correction coefficient and significance level for different milking time; P:Significance level; PMY: 
Partial milk yield; X̄: Mean; SX̄: Standard error; CV(%): Coefficient of variation; n: Number of animals
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correlation than the other methods, while the lowest 
correlation was found between breeding values   obtained by 
BLUP and Bayes Cpi methods. A high degree of correlation 
was determined between the Bayesian methods, and the 
correlations were found to be statistically significant (P < 
0,01).

The accuracy (r(f*ŷ)) and deviations (b(f*ŷ)) of the 
methods for different test population sizes were calculated, 
and they are shown in Table 6. As a result of the analysis, 
it was found that the accuracy (correlation) between 
the breeding values   obtained from Bayes B and Bayes C 
methods, and PMY was higher for the test population size 
78 when compared with the other methods. The lowest 
accuracy was obtained by the BLUP method. While the 
lowest deviation was found in the equation obtained by 
BLUP method, it was found that the highest deviation was 
in the estimation of PMY with breeding values   obtained 
from Bayes Cpi method.

Breeding values   obtained from Bayes B method for 
test population 40 were found to have higher accuracy 
(correlation) than the other methods. The second highest 
accuracy was determined by GBLUP and Bayes A methods. 
However, it was found that the deviation in the estimation 
was the lowest in the BLUP method, and the highest 
deviation was obtained from the Bayes Cpi method.

According to the results of Fisher Z test analysis 
conducted to determine the difference between 
correlation coefficients, there is no statistically significant 
difference between the correlation coefficients obtained 
for test population sizes 78 and 40, and PMY (P > 0.05). 
Correlation matrices can be said to be similar.

According to the results of the study, there is no 
significant difference between Bayesian methods in 
obtaining indirectly estimated genomic breeding values 
(P > 0.05). It was determined that higher accuracy can be 
obtained in breeding values   obtained with the contribution 
of genomic information compared to pedigree-based 
breeding values   estimated with pedigree information. 
Among the Bayesian methods, the reliability of Bayes 
B and Bayes A methods was found to be higher when 
compared with the other methods.

Ding et al. [31] calculated the mean accuracy in the 
Holstein population of China to be 0.380 for the Bayes B 
method for milk yield. They reported that Bayes B method 
predicted better than GBLUP. Rolf et al. [32] reported that 
high direct breeding accuracy was obtained consistently for 
all traits in models using Bayes A method in mixed breed 
commercial feeder cattle. Karaman et al. [18] compared 
genomic prediction methods, namely GBLUP, Bayes B, and 
Bayes C, in the data of human length genome project. They 
reported that when the training population was small (n < 
6000 individuals), Bayes B and Bayes C applied to the 30M 
genome for human-size variable selection methods were 
not superior to GBLUP, but that they were superior when 
more samples were included in the training population.

Habier et al. [33] compared the Bayes Cpi and Bayes 
Dpi methods they developed with Bayes A and Bayes B 
methods for both milk yield, fat yield, protein yield, and 
somatic cell score, both through simulation and in North 
American Holstein bulls. They stated that the accuracy 
they obtained with Bayes Cpi and Bayes Dpi methods were 
similar and that Bayes A method was a good choice to 

Table 4. Results of variance elements.

n Variance elements BLUP GBLUP
(Bayes C0) Bayes A Bayes B Bayes C Bayes Cpi

322

Genetic variance 129,095 108,384 128,532 128,855 123,150 61,085
Error variance 665,456 677,066 658,366 657,822 665,423 722,846
Phenotypic variance 794,551 785,450 786,898 786,677 788,573 783,931
Heritability 0.16 0.14 0.16 0.16 0.16 0.08
Pi - 0.00 0.00 0.95 0.95 0.36
Calculation time (Sec) - 2255 3177 1357 1322 1794

360

Genetic variance 95,352 88,759 94,947 94,876 88,531 38,147
Error variance 688,976 691,169 684,246 684,058 692,074 738,020
Phenotypic variance 784,329 779,928 779,193 778,934 780,605 776,166
Heritability 0.12 0.11 0.12 0.12 0.11 0.05
Pi - 0.00 0.00 0.95 0.95 0.47
Calculation time (s) - 2395 2673 1229 1079 1805

BLUP: Best linear unbiased prediction; GBLUP: Genomic best linear unbiased prediction; n: Number of animals
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estimate the genomic estimated breeding value with actual 
data. They stated that the calculation time of Bayesian Cpi 
method was shorter than that of Bayesian Dpi method and 
that Bayes A method had the longest application time.

4. Conclusion
The use of genomic breeding values   allows the selection 
of animals at an earlier age. In the studies conducted, 
accuracy of selection based on genomic breeding value 
estimation was found to be quite high compared to 
traditional methods based on pedigree information [34]. 
Genomic selection methods, which have a significant 
impact on animal breeding programs, provide an 
important accumulation of knowledge, especially in terms 
of the decisions to be made about which features will be 
improved.

The correlation results between indirect genomic 
breeding values   and PMY show no significant difference 
between Bayesian methods. However, Bayes A and Bayes 

B methods were found to give more reliable results when 
compared with the other methods. Therefore, it can be 
said that Bayes A and Bayes B methods can be used in 
indirect estimation. The increase in the number of animals 
in the training population increased the accuracy of the 
estimates. In addition, it was observed that the accuracy 
of the other methods also increased as the number of 
animals in the training population increased. Meuwissen 
[35] reported that simulation studies may provide more 
accurate estimates of breeding values   when individuals of 
the training and test population are close relatives.

As a result, it can be said that in estimating breeding 
value indirectly, the accuracy rate of the methods increases 
as the number of animals in the training population 
increases, and Bayes B method makes more accurate 
estimates without a big difference.

Since most of the studies on genomic selection have 
been obtained by simulation, their accuracy has not been 
proven yet. For this reason, comparison of real genomic 

Table 5. Correlations between breeding values   calculated using different methods for different test population sizes (Lower 
diagonal (78), Upper diagonal (40)).

Methods n BLUP GBLUP (Bayes C0) Bayes A Bayes B Bayes C Bayes CPi

n 40 40 40 40 40
BLUP - 0.840** 0.837** 0.836** 0.837** 0.822**
GBLUP (Bayes C0) 78 0.802** - 0.999** 0.999** 0.999** 0.997**
Bayes A 78 0.805** 0.999** - 0.999** 0.999** 0.998**
Bayes B 78 0.806** 0.999** 0.999** - 0.999** 0.998**
Bayes C 78 0.810** 0.999** 0.999** 0.999** - 0.997**
Bayes Cpi 78 0.790** 0.999** 0.998** 0.998** 0.997** -

**P < 0.01 BLUP: Best linear unbiased prediction; GBLUP: Genomic best linear unbiased prediction; n: number of animals

Table 6. Accuracy and deviations of methods for different test population sizes.

Method
r(f*ŷ) Fizher Z

P

b(f*ŷ)

n: 78 n: 40 n: 78 n: 40

BLUP 0.060 0.145 0.334 0.436 1.161
GBLUP (Bayes C0) 0.070 0.248 0.181 0.532 2.108
Bayes A 0.071 0.247 0.184 0.463 1.921
Bayes B 0.074 0.250 0.183 0.480 1.945
Bayes C 0.074 0.245 0.191 0.516 2.091
Bayes Cpi 0.069 0.234 0.200 0.874 4.115

BLUP: Best linear unbiased prediction; GBLUP: Genomic best linear unbiased 
prediction; n: Number of animals; P: Significance level; r(f*ŷ): Pearson correlation 
coefficient; b(f*ŷ ) Linear regression coefficient; f: Phenotypic value; ŷ: Estimated 
breeding value
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values   with different Bayesian methods which were not 
used in this study and by using a bigger sample size will 
contribute to the determination of sensitivity of these 
methods against real values. In practice, genomic selection 
can be used to select candidate sires indirectly using train 
data sets of the flock.
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