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1. Introduction
Genomics have emerged as a powerful platform in animal 
breeding and genetics due to decreased  costs of molecular 
markers [1]. Genomic prediction (GP) is important for a 
wide range of scientific and industrial process in animal 
breeding including: detection of genes in connection with 
phenotypes and prediction of genomic breeding values [2, 
3]. The main challenge faced by many researchers is the GP 
of disease statutes of the animals using single nucleotide 
polymorphisms (SNPs) to obtain clinical diagnostic 
systems [4]. 

Scholars have debated the impact of genetic 
architecture of the phenotype [5], preselection of SNPs [4], 
and differences between GP methods [4] for explaining 
the variation in GP accuracy. In the literature of Bayesian 
GP, the relative importance of prior distributions has 
been subject to considerable discussion [6]. Investigating 
genetic architecture of the phenotypes in terms of prior 
distributions is a continuing concern to obtain higher GP 
accuracies. It has conclusively been shown that different 
priors lead to different genetic architectures in terms 
of number and action of the genes and level of linkage 
disequilibrium (LD) [7]. The GP research to date has 
tended to focus on quantitative phenotypes rather than 
binary disease statues. 

Junctional epidermolysis bullosa (JEP) is a heritable 
skin and mucosa disorder in association with mendelian 

mutations in sheep [8, 9]. However, genetic factors 
found to be influencing epidermolysis bullosa have been 
explored in several organisms including cattle [10], sheep 
[8, 11, 12], horse [13], dogs, cats, and rats [13]. Surveys 
in mammals such as that conducted by Sartelet et al. [10] 
have shown that hundreds of mutations in association 
with 18 genes have been molecularly characterized for 
epidermolysis bullosa. The purpose of this investigation 
is to explore the relationship between different priors, LD, 
and SNP selection methods and accuracy of Bayesian GP 
of JEP in sheep. 

2.  Materials and methods
Ninety-two (17 cases and 75 controls) Spanish Churra 
sheep breed were genotyped by 40668 SNP markers. 
Phenotypes were assessed by visual inspection of the 
sheep and recorded as a binary trait. More details about 
the dataset could be found in [8]. SNPs were analysed 
by PLINK [14] for quality control based on minor allele 
frequencies (<0.95), calling rate of SNPs (>0.90), Hardy-
Weinberg proportions (p < 1E-07), and optionally linkage 
disequilibrium (LD) (r2 > 0.7). 

The evolution of the Bayesian GP models was based on 
cross-validation of the genotypic and phenotypic datasets 
over training and testing partions. Splitting the data as 
training (%80 of animals) and testing (% 20 of animals) 
are common for evolution of GP methods [4, 5]. Area 
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under the curve (AUC) approach was used to obtain the 
accuracies over training and testing partions by using 
10-fold cross-validations of Bayesian GP methods as was 
defined in [4].

Bayesian ridge regression (BRR), Bayesian (least 
absolute shrinkage and selection operator) LASSO (BL), 
Bayes A, Bayes B, and Bayes Cπ [7] are currently the most 
popular Bayesian GP methods for investigating animal 

breeding datasets. To obtain GP for animals 
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could be used where y is the phenotype (1 for case of JEP, 
0 for healthy control), n is the number of SNPs, Xi is a 
design matrix connecting animals to genotypes at SNP 
i, and ği is the predicted effect of the genotype at SNP i. 
ği have been used to investigate the genetic properties on 
the phenotype with referring various prior assumptions 
regarding genetic architecture of the phenotype. BRR 
[15] assumes the same additive genetic variance for all 
SNPs by using normal prior distribution. BL [16] assumes 
Laplace prior distribution for shrinking many of the SNPs 
towards zero. Bayes A [15] assumes for the distribution of 
SNP effects is the Student’s t distribution. However, there 
are certain drawbacks associated with the use of Bayes A 
including nonzero SNP effects over genome. The use of 
mixture models has a relatively long tradition within GP 
[17]. One advantage of Bayes B [15] is that it avoids the 
problem of nonzero SNPs effects by using mixture of two 
prior distributions: 
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 is the additive genetic variance of SNP i, with 

v=4.234, S=0.0429 [15], π (assumed to be 0.5) is the 
probability that the SNP has no effect on the phenotype. 
One possible improvement over Bayes B could be obtained 
by predicting π parameter in Bayes Cπ. Bayesian GP 
analysed by the BGLR package [18] with 52,000 Markov 
chain Monte Carlo iterations by 6000 burn-in period. 

The literature on preselection of SNPs for GP has 
revealed the emergence of several contrasting themes [4, 
19] referring to genetic architecture of the phenotypes. 
SNPs were filtered for the stratified training and testing 
GWAS results set by p values (<0.05) and full  data set 
ranked p values (< 0.05) of linear mixed model (LMM) 
[20]. Different from Bayes Cπ: BayesR assumes prior 
distributions with four mixture components of Gaussian 
distribution to model SNPs effects. LMM used a single 
SNP regression model; hence, only SNPs with large effects 
could be detected. 

3. Results and discussion
After the quality control process, 40,642 SNPs with 92 
sheep were obtained. After filtering out highly correlated 
SNPs from the genotypic dataset, 25,254 SNPs were 
obtained (Figure 1). Whole and training only LMM 
detected 2401 SNPs and 2120 SNPs in association with JEB 
respectively. Figure 2 and Table compare the prediction 
accuracies obtained from Bayesian GP models under 
different experimental designs. This table is quite revealing 
in several ways. Firstly, Bayes Cπ was shown to have slightly 
higher predicted accuracy by unselected data. Prediction 
performance of the Bayesian GP models was found to be 
similar after correction for LD. There was a significant 
difference between predicted accuracies due to the SNP 
selection by whole and training only LMM analyses. 
Interestingly, the full LMM-based preselected data gave 
the highest GP accuracy with relatively smaller sampling 
size and smaller standard errors (Figure 2) compared 
with the other experimental designs in Table. The smallest 
sampling size (2120 SNPs) with relatively higher prediction 
accuracies was obtained by the preselection of SNPs using 
training only LMM. Prediction accuracies were found to 
be similar over different Bayesian GP models in each SNPs 
selection methods. 

This study set out with the aim of assessing the 
importance of Bayesian GP of JEP in sheep under different 
experimental settings. The results of this study indicate 
that it is possible to predict JEP in sheep using SNPs 
data. Increased GP accuracy over LMM selected data 
(Table) in this study corroborates with the hypothesis of 
mendelian inheritance pattern for JEP [9]. LMM provided 
the SNPs with largest set of mendelian effects due to its 
single SNP regression algorithm. This finding broadly 
supports the work of other studies in this area linking 
mendelian mutations with JEP [8, 13]. Increased GP 
accuracy over, Bayes Cπ (in the unselected dataset) in this 
study corroborates these earlier findings of mendelian 
inheritance of JEP [8].

 1 Figure 1. Decay of linkage disequilibrium over physical distance.
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The authors in [21] demonstrated that postulated prior 
values for Bayesian GP became more important especially 
with small datasets. Surprisingly, no differences were 
found in Bayesian prediction accuracies over preselected 
datasets using different prior distributions (Table). These 
results could be explained by the fact that filtering the 
SNPs for high LD or preselection of the SNPs for their 
effect sizes (by LMM) reduced the genotypic variation in 
the data and all Bayesian models started to give similar 
accuracies. These results reflect those of  [22], where the 
authors also found the flexibility and interpretability 

of  GP obtained by BayesR under various simulation 
experiments including corrections for LD blocks. In 
accordance with the present results, the authors in [4] 
reported that their Bayesian GP accuracies were found 
to be similar due to unmatched genetic architecture of 
the phenotype and postulated prior distributions. 

Including preselected SNPs in the model improved 
prediction accuracies using GWAS results of whole 
genotypic dataset (Table). Preselection of SNPs is 
beneficial not only for improvement of prediction 
accuracies but also for reduction of dimension of the 
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Figure 2 Prediction accuracies obtained for Bayesian genomic prediction models from 10-fold 4 
cross validations.  5 
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Figure 2. Prediction accuracies obtained for Bayesian genomic prediction models 
from 10-fold cross-validations. 
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genotypic dataset [23]. Instead of 40,642 SNPs: LMM 
SNP selection models GPs obtained by 2401 SNPs. 
This finding is consistent with that of [24], where the 
authors reported advantages of using BayesR in GP for 
taking into account of variants with large effects. It is 
possible to hypothesise that employing SNP selection 
models in conjugate with genetic architecture of the 
phenotype would be more efficient compared with other 
data reduction techniques as such principal component 
analyses. In accordance with the present results, the 
authors in [25] point out that Bayesian GP with whole 
genome sequence data is far more computationally 
expensive with millions of SNPs. However, it has 
been demonstrated that a multiple chain Markov 
chain Monte Carlo methods for Bayesian GP results 
is computationally cost-effective and yields accurate 
predictions [26].  Similarly, the authors in [27] found 
that updating the right hand side of the Bayesian GP 
equations over multiple SNPs may reduce the need of 

memory allocations and computing time. However, it 
could be argued that the inflated accuracies were due to 
SNPs of GWAS results obtained from the whole dataset. 
These results, therefore, need to be interpreted with 
caution. In order to correct this bias, we performed the 
GWAS based on only training samples (Table) to select 
SNPs. As shown in Table, the accuracies were found to 
be lower compared with the results of the full dataset. 

The present study was designed to determine the 
effect of prior distributions in Bayesian GP in terms 
of prediction accuracy under different experimental 
designs. The relevance of genetic architecture in 
conjugate to the prior distributions clearly supported 
by the unselected data. The most obvious finding of this 
study is that preselection of SNPs referring to genetic 
architecture of the phenotype may lower the needs of 
computational load. Consistent with the literature, 
SNP selection process should be exercised on training 
populations in order to avoid falsely inflated accuracies.

Table. Results of Bayesian learning models obtained from different experimental settings over 10 fold 
cross-validation procedure.

Model No. SNPs AUC (SD)

No SNPs removed for linkage disequilibrium
BayesA 40,642 0.684 (0.119)
BayesB 40,642 0.710 (0.117)
BayesC 40,642 0.724 (0.113)
BL 40,642 0.700 (0.125)
BRR 40,642 0.673 (0.130)
Highly correlated SNPs removed for linkage disequilibrium (r2>0.7)
BayesA 25,254 0.727 (0.118)
BayesB 25,254 0.699 (0.132)
BayesC 25,254 0.721 (0.119)
BL 25,254 0.711 (0.134)
BRR 25,254 0.679 (0.128)
SNPs selected by using linear mixed model results (P<0.05)
BayesA 2401 0.919 (0.044)
BayesB 2401 0.922 (0.039)
BayesC 2401 0.898 (0.074)
BL 2401 0.915 (0.061)
BRR 2401 0.910 (0.047)
SNPs selected by using linear mixed model results (P<0.05) obtained from training populations 
BayesA 2120 0.613 (0.126) 
BayesB 2120 0.624 (0.124)
BayesC 2120 0.694 (0.081)
BL 2120 0.619 (0.114)
BRR 2120 0.673 (0.103)
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