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1. Introduction
Goat, which is of primary importance in most civilizations, 
is a multifaceted small ruminant that has a significant role 
for development of rural economy and growing healthy 
human generations. It is an important consideration to 
reveal the relationship between live weight and body 
measurements, which are important indirect selection 
criteria in terms of the studied breed characterization for 
goat breeding purposes. Prediction of live weight in farm 
animals is a significant task for feed amount, medicinal 
dose, and marketing price of an animal, especially under 
village conditions where weigh bridge is unavailable [1]. 
The prediction of live weight played a vital role in flock 
management with the scope of gaining more profit [2]. The 
sustained attention has been drawn about describing body 
measurements that positively influence the live weight 
for reproducing superior offspring that help breeders to 
increase meat productivity in indirect selection criteria. 
In this respect, sophistical statistical techniques are still 
needed to healthy determine the indirect selection criteria. 

Many studies are available about the prediction of live 
weight from body measurements in sheep [3], goat [4], 
and cattle [5]. There were several published studies on 
live weight prediction using different statistical techniques 
i.e. correlation analysis [6–9], simple and multiple linear 
regression [10–12], use of factor and principal component 
analysis in multiple linear regression [13] and decision 

trees and artificial neural network algorithms [1]. However, 
information reported about M, MM, and LTS estimators is 
scarce in live weight prediction in the literature for goat 
species.

Multivariate statistical methods can be used in the 
determining the relationship between live weight and 
morphological characteristics in goat breeding. The 
relationships between explanatory and response variables 
used in scientific studies will be a source of information 
for both current studies and future studies. Multivariate 
statistical methods are needed to determine the estimation 
equations of linear and nonlinear of the relationships 
between explanatory and response variables. The method 
used in modeling the relationship between two and/or 
more than two variables with cause-effect relationships 
is called the regression analysis method [14]. Regression 
analysis has four general uses: modeling between 
explanatory and response variables, parameter estimation, 
estimation, and control [15]. Various estimators are used 
while estimating parameters with the regression analysis. 
To consider the linear regression model that assumes 
the linear relationship between the explanatory and the 
response variable:

y = Xβ + ε
where β is the regression coefficients and ε  is the error 
term. The main purpose of using these estimators is to 
ensure the validity of the predictions to be made. The most 
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basic and widely used estimator for the simple and linear 
regression model used in many fields is the least squares 
(LS) method. LS method aims at minimizing the mean 
square error of the model [16, 17].
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Although the LS estimator has the desired statistical 
properties among the unbiased linear estimators, it can 
be affected in the presence of outliers in the data set [18, 
19]. Outliers are observations that disrupt the normal 
distribution of the observations. Outliers are an expression 
used for observations in the data set that are far from 
the agglomeration point and appear inconsistent [20]. 
Outliers can give information about the real status of the 
data, as well as measurement errors, errors during record 
keeping and errors made during the transfer of records 
[21]. The presence of outliers is one of the most likely 
events for many scientific studies. If there is an outlier in 
the data set, the reliability of the model estimates to be 
made with the LS is considered as poor or sensitive [21, 
22]. In the presence of outliers, due to the low reliability of 
the estimates to be made based on the LS, robust statistical 
methods have been proposed as an alternative to LS.

In this study, we aimed to estimate the optimum model 
by comparing the performance of the model with the 
use of robust estimators such as M (for Huber and Tukey 
bisquare) estimator, MM estimator and LTS estimator that 
proposed as alternative estimators to LS in the presence of 
outliers in the data set in linear regression.

2. Material and methods
2.1. Material
The data set used as a material in this study was taken 
from Saanen kids in a private business in Bafra district 
of Samsun province. For this purpose, various body 
measurements (wither height (WH), body length (BL), 
chest depth (CD) and rump height(RH)) and live weights 
(LW) (up to 6 months of age including birth) taken from 
82 head Saanen kids for 6th month were used. Sixth month 
live weight (kg) was used as a response variable (y).

For the descriptive statistics of the data performed by 
using “psych” package with R software [23]. Analyzes were 
made in RStudio program using packages containing the 
solution of related estimators [24]. The related packages 
for MM and S estimator were used “robustbase”, for LTS 
estimator “robustHD” were used [25, 26]. Also for Huber 
and bisquare M estimator were used MATLAB program. 
In the calculation of model comparison criteria, the 
RStudio program was used by using the “ehaGoF” package 
written by Eyduran [27].

2.2. Methods
Linear regression is an approach to explain and model the 
relationship between explanatory and response variables. 
The matrix notation of the function of the multiple 
regression model with more than one independent variable 
is given as follows:

y = Xβ + ε
where β is the regression coefficients, y is n × 1 dimensional 
vector as response variable, X is n × (p + 1) dimensional 
matrix as an explanatory variable and ε is n × 1 dimensional 
vector for the error term.

The prediction equation obtained as a matrix notation is
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.
Many methods have been proposed to find the 

estimated parameters in the regression model represented 
in matrix format. The most widely used method for linear 
regression is the LS method. Although LS is shown as the 
most appropriate method in model estimation, if model 
assumptions i.e. constant variance, linearity, normality, 
and multicollinearity, etc., cannot be achieved, the use of 
this method may not be reliable [28, 29]. Due to the low 
performance of the model estimation in the case of outliers 
in the data set with the LS method, new methods that are 
not affected by the outliers and make more efficient model 
estimation with the adding of a weighting function have 
been developed with the term “Robustness” first proposed 
by [29, 30].
2.2.1. Least squares method
The LS is the method used to determine the best-fit line 
for a data set, providing a visual representation of the 
relationship between data points [4]. The main purpose of 
LS is to minimize the sum of the squares of error terms of 
the estimated parameters (β) in the model of the regression 
model. Estimation parameters (β) with the LS method are 
calculated as given below [31].
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The prediction of βLS is the one with the smallest 
variance of all the unbiased estimators of the parameter 
β. In case of outliers in the data set, the reliability of the 
regression model will be adversely affected [16, 32]. The 
normal distribution of the error terms, which is one of the 
assumptions of LS, occurs when there are outliers in the 
data set.

As an alternative to LS, many methods have been 
proposed to eliminate the negative effect of outliers.
2.2.2. M estimator
For the model estimates to be made with LS, if there is 
an outlier in the data set, the reliability of the model to 
be obtained decreases. The M estimator was proposed by 
[33] and eliminates the negative effect of the outlier in 
the model estimation. The M estimator is an extension 
of the maximum likelihood (ML) method. M estimator 
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is a widely used method when there are leverage points 
between observations [34]. In the LS method, it is aimed 
to minimize the errors, but the presence of an outlier in the 
data will make it difficult to minimize the error and cause 
unreliable results [21]. For this reason, the M estimator, 
which is developed, tries to minimize the p(ei) function 
in which the errors are found, instead of minimizing the 
mean square error.
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,
where p(ei) is a differentiable function. This function when 
derivatived according to the β parameters, the weighted 
function is obtained as given below.
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There are different functions such as Huber and 
Tukey bisquare which are used in the calculation of the M 
estimator.
2.2.2.1. Huber M estimator
The function for Huber M estimator as given below.
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Taking the derivative of the p(e) function according to 
the errors, the weighted function of the Huber M estimator 
[35] and also the value of the k parameter of the Huber M 
estimator is 1.345 [36].
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2.2.2.2. Tukey bisquare M estimator
The function for Tukey bisquare M estimator as given 
below.
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Taking the derivative of the p(e) function of the Tukey 
bisquare M estimator and also the value of the k parameter 
of the Tukey bisquare M estimator is 4.685 [36].
2.2.3. MM estimator
The MM estimator was proposed by [37] as a method 
with a high breakdown point. The MM estimator makes 
the regression parameter estimation using the S estimator 
that minimizes the scale of the M estimator [38]. MM 
estimator allows data to be generated by looking at the 
distances between subsets and the method based on 
defining data away from the majority subset as an outlier 

[39].  MM estimation aims to obtain estimates with high 
breakdown point and more reliable results. The MM 
estimator obtains the errors using the S estimator. In the 
second step, it calculates the scale parameter of the model 
obtained. Then, with the calculated scale parameters, the 
scaled errors can be calculated as given below:
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The weight function is calculated given below using the 

scaled errors.
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Further, estimate βMM using the weighted least square 
(WLS) with obtained weights from the weighted function. 
This process continues until convergence is complete. If 
there is no convergence, the MM estimator returns to the 
first stage and the iterative process starts again [38].
2.2.4. Least trimmed squares (LTS) estimator
LTS estimator, which is one of the Robust regression 
methods, is proposed by [40]. The objective function of 
the LTS estimator is the smallest trimmed of squared 
residuals as given below.
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3. Results and discussion
The Kolmogorov–Smirnov test was used to check whether 
the data was suitable for normal distribution in the study 
in which the 6th month live weight of Saanen races was 
wanted to be estimated with different estimators and to 
evaluate their performance. Descriptive statistics and 
normality test results as a p-value about variables used as 
result and explanatory variable are given in Table 1. The 
explanatory variables such as 1st month live weight, 6th 
month withers height, 3th month body length, birth chest 
depth, 1st month chest depth, 2nd month chest depth, 
4th month chest depth, 6th month chest depth, 3rd rump 
height, and 6th rump height were determined that they do 
not show normal distribution (p < 0.05). The data set was 
divided as 70% train and 30% test set.
3.1. Results of least squares method
The model obtained from the LS method by using various 
body measurement values of the 6th month live weight is 
given in Table 2.

In Table 2, constant, 5th month body weight and 6th 
month breast depth variables have a statistically significant 
contribution in the model for training set (p < 0.05). The 
MSE, R2 and R2

adj values of the model are 2.148, 84.3 and 
70.7, respectively. The Pearson correlation coefficient 

between the estimated 6th month live weight values and 
the actual values was determined as 0.918.
3.2. The result of M estimator
3.2.1. Huber M estimator
The model obtained from the Huber M estimator method 
by using various body measurement values of the 6th 
month live weight is given in Table 3.

In Table 3, the intercept and the 5th month body 
weight variable has a statistically significant contribution 
to the model for the training set (p < 0.05). The MSE, R2 
and R2

adj values of the model are 2.705, 80.2% and 63%, 
respectively. The Pearson correlation coefficient between 
the estimated 6th month live weight values and the actual 
values was determined as 0.903.

For the testing set, the MSE, R2 and R2
adj values of 

the model are 6.119, 61.8% and 58.3%, respectively. The 
Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.792.
3.2.2. Tukey bisquare M estimator
The model obtained from the Tukey bisquare M estimator 
method by using various body measurement values of the 
6th month live weight is given in Table 4.

In Table 4, 5th month body weight variable has a 
statistically significant contribution to the model for the 
training set (p < 0.05). The MSE, R2 and R2

adj values of 
the model are 3.241, 76.3% and 75.4%, respectively. The 
Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.886.

For the testing set, the MSE, R2 and R2
adj values of 

the model are 6.589, 58.8% and 55.1%, respectively. The 
Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.774.
3.3. Results of MM estimator
The model obtained from the MM estimator method by 
using various body measurement values of the 6th month 
live weight is given in Table 5.

In the training set, the best model estimation was 
performed under conditions 44th iteration and 0.2571 
scale parameter. In Table 5, intercept, 1st month live 
weight, 3rd month live weight, 5th month live weight, 
1st mont withers height, 2nd month withers height, 6th 
month withers height, birth body length, 2nd month 
body length, 3rd month body length, birth chest depth, 
1st month chest depth, 6th month chest depth, 5th month 
rump height and 6th month rump height variable has a 
statistically significant contribution to the model for the 
training set (p < 0.05). The MSE, R2 and R2

adj values of 
the model are 2.543, 81.4% and 80.7%, respectively. The 
Pearson correlation coefficient between the estimated 
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6th month live weight values and the actual values was 
determined as 0.904.

For the testing set, the MSE, R2 and R2
adj values of 

the model are 6.131, 61.7% and 58.2%, respectively. The 
Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.793.
3.4. Results of LTS estimator
In the training set, the best model estimation from the 
LTS estimator was performed under conditions 0.5022 
scale parameter. The estimated intercept and 5th month 
live weight have a statistically significant contribution to 
the model for the training set (p < 0.05) and coefficients 
of significant variables were detected 4.8894359 and 
0.9771741, respectively. The MSE, R2 and R2

adj values of 
the model are 4.507, 61.7% and 65.9%, respectively. The 

Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.859.

For the testing set, the MSE, R2 and R2
adj values of 

the model are 6.725, 58.0% and 54.2%, respectively. The 
Pearson correlation coefficient between the estimated 
6th month live weight values and the actual values was 
determined as 0.768.
3.5. Model comparison
In the study where alternative estimators were used in 
cases where outliers were found in the data set, MAD, 
MAPE, RMSE, MSE, R2, R2

adj, rRMSE and AIC were used 
as model comparison criteria.

Model comparisons were made according to the lowest 
RMSE, rRMSE, MAPE, MAD and AIC values and the 
highest R2 and R2

adj values [43].

Table 1. Descriptive statistics and normality test results.

Mean Standard deviation Minimum Maximum p-value*

LW6 30.79 3.85 19.90 44.40 0.076
BW 3.77 0.81 2.00 5.70 0.200
LW1 9.38 1.37 7.00 12.70 0.004
LW3 17.54 2.24 12.60 22.20 0.200
LW5 26.17 2.58 17.20 31.20 0.200
BWH 39.73 1.61 35.00 43.00 0.083
WH1 42.78 1.48 39.00 46.00 0.200
WH2 46.71 1.63 42.50 50.00 0.043
WH4 53.74 2.06 49.00 59.00 0.005
WH6 59.85 2.57 54.50 67.50 0.001
BBL 38.34 1.65 34.50 42.00 0.200
BL1 42.12 1.68 37.50 45.50 0.165
BL2 46.19 1.69 42.50 50.00 0.200
BL3 49.01 2.22 44.00 55.00 0.004
BL5 53.93 2.75 47.50 60.00 0.046
BCD 12.12 0.91 10.00 14.50 0.003
CD1 15.63 1.16 13.00 19.00 0.018
CD2 17.36 1.24 14.50 21.00 0.007
CD4 20.63 1.42 18.00 24.00 0.004
CD5 22.55 1.35 19.50 26.50 0.096
CD6 25.13 1.10 22.50 27.50 0.006
RH2 45.47 2.31 39.50 49.50 0.044
RH3 48.73 2.08 43.00 53.00 0.001
RH4 51.77 1.87 47.00 57.00 0.182
RH5 55.22 2.17 51.00 61.00 0.161
RH6 59.59 2.82 52.00 67.50 0.038

* p-value for Kolmogorov–Smirnov test.
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According Table 6, it was determined that the highest 
R2 and R2

adj value is for the M-Huber estimator. Moreover, 
when the other model selection criteria are examined, it 
was seen that the MM estimator has the lowest value in 
terms of MAPE and MAD, M-Huber estimator has the 
lowest value in terms of MSE, RMSE, rRMSE and AIC.

Under these conditions, it is recommended to use the 
M-Huber estimator to estimate the 6th month live weight 
of Saanen kids.

4. Conclusion
In the present study, we aimed to determine the effective 
performances of M, MM and LTS estimator according to 
LS method in the presence of outliers in the data set. For 
this purpose, we first made the model predictions in the 
data set with outliers and we concluded that the model 
performance of the M-Huber estimator is more reliable 

in the presence of outliers in the data set. It supports the 
result we have achieved in the studies.

[44] aimed to compare the model performances in 
which LS method, the M estimator, Theil estimator, and 
the least absolute deviation (LAD) estimator and stated 
that the M estimator gave the best result in terms of model 
performance. [45] aimed to compare of performance the 
M estimator, which is one of the robust estimators, as an 
alternative to the LS in the presence of outliers, stated 
that the M estimator is more useful than the LS. [46] 
emphasized that the best three methods were M, MM-S 
and MM estimators in their study where they compared 
EKK, Huber M estimator, bisquare M estimator, MM 
estimator, S estimator, and MM (-S) estimators.

Regression analysis, which is one of the multivariate 
statistical methods used in the interpretation of the data 
obtained as a result of scientific studies, provides the 

Table 2. Results of least squares.

Estimate Std. error t value Sig.

(Intercept) –43.1123 19.1871 –2.247 0.0319
BW –2.0637 1.7964 –1.149 0.2594
LW1 1.7787 1.5932 1.116 0.2728
LW3 –1.3767 0.8092 –1.701 0.0989
LW5 1.9060 0.4119 4.627 6.24e-05
BWH 0.5136 0.5710 0.900 0.3753
WH1 0.6600 0.5305 1.244 0.2228
WH2 0.8968 0.8096 1.108 0.2765
WH4 –1.1275 0.7504 –1.503 0.1431
WH6 0.9015 0.6238 1.445 0.1584
BBL –0.8471 0.5690 –1.489 0.1467
BL1 –0.5404 0.9696 –0.557 0.5813
BL2 –1.0051 0.6535 –1.538 0.1342
BL3 0.3733 0.6090 0.613 0.5444
BL5 0.1979 0.4373 0.453 0.6540
BCD 1.2968 1.0451 1.241 0.2240
CD1 –0.3957 1.3880 –0.285 0.7775
CD2 –0.4001 0.9451 –0.423 0.6750
CD4 0.3501 0.7274 0.481 0.6337
CD5 –1.6402 1.0583 –1.550 0.1313
CD6 1.8093 0.8586 2.107 0.0433
RH2 –0.3051 0.5152 –0.592 0.5581
RH3 0.2942 0.6031 0.488 0.6291
RH4 0.2150 0.6915 0.311 0.7580
RH5 0.2736 0.4553 0.601 0.5523
RH6 –0.2855 0.4162 –0.686 0.4979

Table 3. Results of Huber M estimator.

Estimate Std. error t value Sig.

(Intercept) –-14.136 18.544 –0.762 0.452
BW –0.522 1.736 –0.301 0.765
LW1 0.612 1.540 0.398 0.694
LW3 –0.736 0.782 -0.941 0.354
LW5 1.488 0.398 3.737 0.001
BWH 0.283 0.552 0.513 0.612
WH1 0.206 0.513 0.402 0.691
WH2 0.638 0.782 0.816 0.421
WH4 –0.367 0.725 –0.505 0.617
WH6 0.134 0.603 0.222 0.826
BBL –0.675 0.550 –1.227 0.229
BL1 0.071 0.937 0.076 0.940
BL2 –0.563 0.632 -0.892 0.379
BL3 0.405 0.589 0.688 0.496
BL5 –0.027 0.423 –0.063 0.950
BCD 0.326 1.010 0.323 0.749
CD1 0.016 1.342 0.012 0.990
CD2 –0.280 0.913 –0.306 0.761
CD4 0.082 0.703 0.117 0.908
CD5 –0.093 1.023 –0.091 0.928
CD6 0.397 0.830 0.478 0.636
RH2 –0.086 0.498 –0.173 0.864
RH3 0.080 0.583 0.137 0.892
RH4 –0.114 0.668 –0.170 0.866
RH5 0.108 0.440 0.245 0.808
RH6 –0.030 0.402 –0.075 0.941
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Table 4. Results of Tukey bisquare M estimator.

Estimate Std. error t value Sig.

(Intercept) –1.959 18.546 –0.106 0.917
BW 0.132 1.736 0.076 0.940
LW1 0.168 1.540 0.109 0.914
LW3 –0.513 0.782 –0.656 0.517
LW5 1.383 0.398 3.473 0.002
BWH 0.286 0.552 0.519 0.608
WH1 0.113 0.513 0.221 0.826
WH2 0.572 0.783 0.730 0.471
WH4 –0.180 0.725 –0.249 0.805
WH6 –0.100 0.603 –0.166 0.869
BBL –0.524 0.550 –0.953 0.348
BL1 0.232 0.937 0.248 0.806
BL2 –0.459 0.632 –0.726 0.473
BL3 0.367 0.589 0.624 0.537
BL5 –0.105 0.423 –0.249 0.805
BCD 0.074 1.010 0.073 0.942
CD1 0.472 1.342 0.352 0.727
CD2 –0.419 0.914 –0.459 0.650
CD4 0.036 0.703 0.051 0.959
CD5 0.184 1.023 0.180 0.858
CD6 –0.033 0.830 –0.039 0.969
RH2 –0.112 0.498 –0.224 0.824
RH3 0.018 0.583 0.031 0.975
RH4 –0.236 0.668 –0.353 0.726
RH5 0.022 0.440 0.051 0.960
RH6 0.087 0.402 0.216 0.830

Table 5. Results of MM estimator.

Estimate Std. error t value Sig.

(Intercept) –25.9431 3.69507 –7.021 6.99E-08
BW –1.51388 0.20641 –7.334 2.96E-08
LW1 1.34885 0.1928 6.996 7.48E-08
LW3 –1.08014 0.40673 –2.656 0.01239
LW5 1.57157 0.31239 5.031 1.97E-05
BWH 0.1992 0.11472 1.736 0.09243
WH1 0.13241 0.05729 2.311 0.02765
WH2 0.62715 0.22672 2.766 0.00947
WH4 –0.34124 0.18465 –1.848 0.07417
WH6 0.21114 0.0715 2.953 0.00595
BBL –0.88609 0.15566 –5.692 2.95E-06
BL1 0.08818 0.358 0.246 0.80707
BL2 –0.66909 0.20562 –3.254 0.00275
BL3 0.55256 0.091 6.072 1.00E-06
BL5 0.03478 0.04362 0.797 0.4313
BCD 0.5132 0.09615 5.338 8.16E-06
CD1 –0.63247 0.20423 –3.097 0.00413
CD2 –0.01596 0.11028 –0.145 0.88586
CD4 0.01685 0.08261 0.204 0.83975
CD5 –0.07721 0.15163 –0.509 0.6142
CD6 0.67918 0.11537 5.887 1.69E-06
RH2 0.04523 0.17222 0.263 0.79457
RH3 0.04833 0.09352 0.517 0.60897
RH4 0.00979 0.07623 0.128 0.89863
RH5 0.28268 0.04131 6.844 1.14E-07
RH6 –0.16482 0.07647 –2.155 0.03902

Table 6. Comparisons of the model performances.

  LS M-Huber M-bisquare MM LTS

MSE 5.528 6.119 6.589 6.131 6.725
RMSE 2.351 2.474 2.567 2.476 2.593
rRMSE 7.817 8.225 8.535 8.233 8.622
MAPE 3.970 2.675 2.755 2.164 2.560
MAD 1.264 0.928 0.962 0.776 0.875
R2 0.655 0.618 0.588 0.617 0.58
R2

adj 0.624 0.583 0.551 0.582 0.542
AIC 46.745 49.286 51.137 49.334 51.645

opportunity to model the studies and make predictions. 
Using the correct estimator is important for the reliability 
of the results for the regression analysis. Especially in 

biological studies, the accuracy of the analysis method used 
as well as the sensitivity of the experiments established is 
important for the reliability of the results to be obtained.
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In the current study, it was aimed to estimate the 6th 
month live weights from various body measurements 
taken from Saanen kids in the presence of outliers in 
the data set, Huber type M estimator, one of the robust 
estimating methods, was proposed.
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