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1. Introduction 
Noise is one of the most dangerous environmental stressors 
of our time because it causes somatic changes that go 
unnoticed. Research confirms that noise above 90 dB is 
a harmful stressor, affecting the immune and endocrine 
system. Blood pressure and heart rate increase, ischaemic 
heart disease develops more quickly and mental changes 
are observed [1].

It is well known that the stress response leads to the 
production of reactive oxygen species (ROS) in tissues, 
which damage receptor proteins, nucleic acids and lipid 
membranes, damaging cells and tissues both structurally 

and functionally [2]. McIntosh and Sapolsky [3] found 
that chronic stress and stress-induced production of 
glucocorticoids affect ROS formation and increase 
their amount by approximately 10%. Various stressors 
are potent in increasing the number of free radicals in 
the brain [4]. Since the brain contains large amounts of 
polyunsaturated fatty acids, it is particularly vulnerable 
to the damaging effects of free radicals, and thus to 
stress-induced degenerative changes [5]. Accordingly, 
several previous studies have addressed the relationship 
between stress and lipid peroxidation processes in the 
brain [6].
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To neutralise ROS the body uses various enzymatic 
(e.g., copper, manganese and zinc superoxide dismutase, 
catalase, glutathione peroxidase) and nonenzymatic 
antioxidants (e.g., glutathione). Sahin and Gümüslü [7] 
found higher activity of antioxidant enzymes, decreased 
glutathione and increased plasma corticosterone levels in 
rats exposed to different stressors.

It has been shown in several species, including 
humans, that stress does not affect the two sexes equally. 
Women are twice as likely as men to develop stress-
related major depressive disorder and anxiety [8, 9, 10]. 
This sex difference extends not only to prevalence but 
also to symptom severity and treatability [11, 12]. While 
women have a higher prevalence of anxiety disorders 
and depression, men are at higher risk of autism and 
schizophrenia [13, 14]. This phenomenon is likely to be 
driven by sex hormones and their receptors in the brain 
[15], but the difference is already evident in the prenatal 
period [16]. It has also been shown in rodents that the two 
sexes are not equally sensitive to stress [16, 17, 18]. When 
exposed to early life stress, female mice exhibited depressive 
symptoms, but males did not, and female symptoms were 
treatable by antidepressant administration [19]. Similar 
results were obtained in mice exposed to subchronic stress, 
where females showed depressive behaviour, but males 
did not. In addition, stress in the female brain increased 
the expression of the enzyme DNA methyltransferase 3a 
in the nucleus accumbens, which has been shown to be 
associated with stress-induced depression in humans [20]. 
In a forced-swim test adult female rats spend more time 
immobile than males, but separation from other rats, for 
example, caused depressive symptoms in males but not in 
females [21]. The defeat stress causes depressive symptoms 
in adult male rats, but not in females [22, 23]. These data 
suggest that male rats are more sensitive to social stress 
than females.

The difference is not just in behaviour, of course. 
Chronic immobilization stress reduced neurogenesis in 
the gyrus dentatus of adult female rats, while it enhanced it 
in males [24]. Adult social stress induced a similar effect in 
the dorsal hippocampus, with decreased cell proliferation 
in that area in female rats [25] and increased cell 
proliferation in males [26]. In the background of the social 
isolation feeling of females the amylin-calcitonin receptor 
signalling pathway was found in the medial preoptic area 
of the forebrain [27]. These findings suggest that stress in 
female animals is more likely to reduce neurogenesis in 
adulthood than in males.  

Sex hormones have multiple receptors on brain 
neurons and even on glial cells; therefore, they influence 
their structure and function at molecular and cellular 
levels, affecting behaviour, cognitive function, blood 
pressure regulation, pain perception and may also have 

neuroprotective effects [28]. In addition, progestins, 
androgens and glucocorticoids can bind to each other’s 
receptors [29]. In humans, both male and female sex 
hormones influence mood [30, 31]. But a similar process 
has also been demonstrated in animals [32]. Moreover, in 
females sex hormone levels are constantly changing due 
to cyclical gonadal function. Viau and Meaney [33] found 
that female rats are most sensitive to stress effects during 
the proestrous period. However, it is not only sex hormones 
that affect brain function, but also sex chromosomes [34].  

Unfortunately, despite the increasingly obvious sex 
differences, male animals are still predominantly used 
to study stress and related disorders. This is due to the 
cyclical gonadic functioning of females, which introduces 
considerable variability in studies [35]. Such disregard for 
the impact of sex differences in scientific experiments is 
a serious obstacle to translation and makes it difficult to 
treat many diseases in practice [36]. The aim of this study 
was to evaluate the effects of repeated noise stress in female 
and male mice.

2. Materials and methods
In the study 12 male and 12 female SPF/VAF, CD1 
mice (Crl:CD1(Icr), Animalab Hungary Kft.) were 
used. The animals were 3 weeks old at the beginning 
of the experiment. The mice were housed in T2 type 
polycarbonate boxes (Acéllabor Kft.), 330 × 160 × 137 
mm, and Abedd Aspen Bedding (Animalab Hungary Kft.) 
wood chipping was used as bedding material. Drinking 
water and feed (1314 EN Breeding diet for mice and rats, 
Animalab Hungary Kft.) were available ad libitum. The 
2 groups were randomly selected, 6 females and 6 males 
were assigned to the noise group (N) and 6 females and 6 
males to the control group (C). Animals in the same group 
(6 males and 6 females) were housed in the same room in 
separate cages. The control group was in a quiet, isolated 
room, and the noise group listened to a 70 dB noise mix 
in a different room for 10 h a day (between 8 a.m. and 6 
p.m.) from day 9 onwards. The list of noises used is shown 
in Table 1. 

For the first 5 days, no tests were done to let the animals 
adapt to the new environment. Then, for three consecutive 
days, the acclimatisation to the open-field (OF) test was 
carried out by placing each animal individually in the OF 
for 10 min a day in a quiet room. The vivarium used for the 
OF test was a 60 × 27.5 × 30 cm glass apparatus. 

The first experiment was performed on day 9 
(recording of baseline behaviour). Then, the animals were 
placed one by one on the same OF as during habituation 
for 3-3 min and a noise mixture was played to them at 
a sound pressure level of 90 dB. Video recordings of the 
OF tests were made and analysed using Noldus Observer 
XT software. After the test, the animals were returned to 
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their original location and from then on, the noise group 
received noise treatment for 10 h a day. The noise mixture 
used for the OF and for the habituation contained similar 
but not identical noises. The OF test was repeated under the 
same conditions on day 16 (week 1) and day 23 (week 2). 
During the tests, we observed the position of the animals 
in the OF (centre, corner, edge), their locomotor activity 
(moving, sitting, rearing) and some other behavioural cues 
(listening, sniffing, self-grooming). 

After the final OF tests, the mice were weighed, then 
bled out after anaesthesia with i.p. pentobarbital injections 
(Euthanimal 40%, 400 mg/mL, Alfasan Nederland BV), 
and finally the brains were removed under icy conditions. 
Dissection was performed, during which histological 
samples were taken from the thymus, spleen, adrenal 
glands, testes, and ovaries. 

Whole mouse brains were homogenized in ice-cold 
isotonic KCl solution with Potter-Elvehjem homogenizer 

and protein content was set to 10 mg/mL and bovine serum 
albumin was used as a standard. Protein concentration 
was measured by the method of Lowry et al. [37] using 
serum albumin and 50–100 μL volumes were taken from 
these samples.

For the total scavenger capacity measurement the 
reaction mixtures consist of H2O2/·OH, microperoxidase 
and luminol. In detail, the composition of the reaction 
mixture is as follows: 300 μL hydrogen peroxide (10,000 
dilutions), 300 μL microperoxidase (3 × 10 − 7 M) 50 μL 
luminol (7 × 10 − 7 M), the sample is in 50 or 100 μL. Total 
volume is 850 μL. The intensity of the chemiluminescence 
light is given as the relative light unit (RLU) reduced 
by tissue homogenate. In this system, free radicals are 
generated and the examined brain homogenate antioxidant 
capacities inhibit oxidative reactions. Measurements is 
carried out with Berthold Lumat 9501 luminometer in 30 
s reaction time [38].

Table 1. List of noises used for habituation and open-field tests.

Noises for habituation Wind and rain Sewing machine

Ship horn Smoke detector Squeaking door and gate

Shovelling snow Shovelling sand Wind chime

Factory siren Coin spinning and dropping Ducks, geese

Rain and thunder (multiple) Banging on a door Waste compactor

Rain Saw Dropped metal container

Siren (multiple) Whiplash Door knocker

Air alarm Pencil and eraser sound Rain sound on umbrella

Zipper Shattering glass Garage door opening

Crickets Phone ringing (multiple) Knocking on a door

Frogs Bees Forest fire

Compressor Electric can opener Broom sweeping

Beer mug sliding on the counter Wind blowing Human heartbeat

Fireworks Sneezing woman Knocking on wooden door

Bell Blender Elevator bell

Laughing man and woman Digital printer Morse code

Puma Chimpanzees fighting Rocket

Opening, closing briefcase Computer keyboard Scratching

Closing a filing cabinet Hammer Shower

Screaming woman Irrigation system Waste disposal

Doorbell Snoring man Vacuum cleaner

Noises for the open-field tests

Siren Hammer Passing helicopter

Factory siren Rain and thunder Aircraft taking off

Telephone ringing
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The H-donor activities of samples were determined 
with the help of 1,1-diphenyl-2-picrylhydrazyl (DPPH) 
stable free radical by the modified spectrophotometric 
method of Hatano et al. [39]. For the determination, 
the 50 μL brain homogenate (protein content: 10 mg/
mL) was adjusted with 950 μL bidistilled water to 1 mL 
volume. After, 1 mL methanol was added to it. After this 
500 μL methanolic DPPH-solution (9 mg DPPH was 
dissolved in 100 mL methanol) was added, and stirred. 
The reaction mixture was incubated for 30 min at 37 °C. 
Ten-minute centrifuging was carried out (3000 rpm) and 
the absorbance was determined at 517 nm with methanol 
blank.

The modified Ottolenghi [40] method was used to 
study the induced lipid peroxidation in brain homogenates. 
The reaction mixture contains tris-maleate buffer (0.05 
M, pH 6.8), KH2PO4 (1 mM) and brain homogenate with 
1 mg/mL protein content, Fe2+ (0.2 mM), and ascorbic 
acid (5 × 10–3 M) to induce lipid peroxidation (LPO). 
Total volume is 0.5 mL (adjusted with bidistilled water). 
Samples were incubated at 37 °C for 20 min.  After 
induction of lipid peroxidation 0.4 mL was mixed with 
2 mL 2-thiobarbituric acid solution (1%). The samples 
were placed in boiling water for 20 min, then centrifuged 
(3000 rpm) at 4 °C. The extinction of supernatant was 
determined spectrophotometrically at 535 nm.

For the tests serum bovine albumin, luminol, hydrogen 
peroxide, microperoxidase, 1,1-diphenyl-2-picrylhydrazyl 
(DPPH), maleic acid were obtained from Sigma-Aldrich 
(St. Louis, MO, USA). All the other reagents in the 
analytical grade were purchased from Reanal (Budapest, 
Hungary). 

The normal distribution of raw data was evaluated using 
the Kolmogorov-Smirnov test. Comparative statistical 
analysis was carried out by one-way ANOVA followed by 
posthoc Tukey HSD test based on the theory described 
by Petrie and Watson [41]. The statistical software “R” 
has been used. Differences between the groups were 
considered significant in all cases at the level of p < 0.05. 

During the design and implementation of the study, 
we considered the EU Directive 2010/63/EU and the 
Hungarian Government Decree 40/2013 (14.II.) on 
Animal Experiments. The studies were approved by the 
Animal Welfare Body of the University of Veterinary 
Medicine Budapest under PE/EA/1277-5/2017.

3. Results and discussion
3.1. Results
Our results show that the three-week noise treatment 
did not cause clinically manifested stress in the animals. 
Animal growth was not affected by the noise treatment. 
Males weighed 8.9 ± 2.5 g more than females in the control 
group and 9 ± 1.8 g more than females in the noise-treated 
group, which is natural in mice. No significant differences 
in organ weights were found between the groups (Table 
2). Neither pathological nor histological examination 
revealed any stress-induced lesions in the animals. Figure 
1 shows the histological structure of the adrenal glands, 
while Figure 2 shows the spleen. 

The treatment affected the lipid peroxidation status of 
the brain. In the control group, fewer free radicals were 
formed in the brains of male animals than in females. At 
the same time, noise habituation resulted in lower levels of 
lipid peroxidation in the brains of females than in control 
females but had no effect in males (Figure 3).

In the open-field tests, the animals spent most of their 
time in the corner of the open-field and least in the edge 
of the apparatus. No significant differences were found 
between groups in terms of positioning on the OF (Table 
3). 

For other behavioural elements, no significant 
differences were found between treatment groups and 
the different time points of the OF tests. The exact data is 
shown in Table 4. 
3.2. Discussion 
Research to date has shown that the adverse effects of 
noise are clear, it acts as a stressor. Therefore, noise is an 
additional variable in scientific research, the control of 
which is essential to meet the requirements of the third 
R, refinement. In animal houses, there are many noise 
sources: the various machines (from ventilation systems to 
computers and telephones), the animals, the staff working 
there, and the various operations all generate noise to a 
greater or lesser extent. But noise can also come from 
outside of the building, whether artificial (e.g., the sound 
of transport) or natural (e.g., a storm). The main source of 
noise in animal housing, however, is the human activity; 
animal housing areas are usually quiet when people are 
not present [42]. The aim of the present study was to gain 
insight into the effects of prolonged noise treatment on 

Table 2. Weight of animals and absolute weight of organs at the end of the experiment (grams, mean ± SD).

Group Weight Thymus Testis Spleen Liver

Control female 27.3 ± 1.6 0.16 ± 0.07 0.14 ± 0.03 1.46 ± 0.21
Control male 36.2 ± 3.4 0.18 ± 0.07 0.41 ± 0.09 0.13 ± 0.03 1.90 ± 0.25
Noise female 28.5 ± 1.5 0.10 ± 0.04 0.13 ± 0.01 1.22 ± 0.29
Noise male 37.5 ± 2.1 0.21 ± 0.05 0.47 ± 0.06 0.11 ± 0.02 2.12 ± 0.27
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animal behaviour, noise tolerance and the formation of 
free radicals in the brain.

Stress activates the sympathetic nervous system and 
increases the synthesis of catecholamines [43]. During 
the metabolism of catecholamines such as dopamine or 
noradrenaline in the brain, free radicals are produced 
[44], and these compounds can undergo autooxidation, 
which releases electrons that promote ROS formation 
[45]. To neutralise these, the body produces enzymatic 
(e.g., copper and zinc superoxide dismutase, catalase, 
glutathione peroxidase) and nonenzymatic antioxidants 
(e.g., glutathione). Sahin and Gümüslü [46] compared 
oxidative parameters of different organs in animals 
exposed to cold stress. Among the organs studied (brain, 
liver, kidney, heart), the highest catalase activity was 
measured in the brain. In their later study, the activity of 
antioxidant enzymes increased in the brain of animals 

exposed to different stresses, while the concentration of 
glutathione decreased [7]. 

Free radical levels in the brain correlate with 
neurotransmitter synthesis. Mental stress in mice increases 
lipid peroxidation activity in the brain, but no such change 
is measured in the liver or serum [47]. These findings 
suggest that lipid peroxidation in the brain might be one 
of the first measurable signs of stress. Nitric oxide (NO) 
is one of the signal transmitting molecules of the central 
nervous system and chronic stress enhances its synthesis by 
increasing NOS (nitric oxide synthase) expression [6], as 
stress triggers the overproduction of the neurotransmitter 
glutamate [48]. Overproduction of NO is toxic to cells 
because it may form peroxynitrite with superoxide 
radicals, a highly reactive molecule that damages DNA, 
lipids, and proteins. Estradiol has a regulatory role in the 
production of NO by reducing the expression of NOS in 

Figure 1. Histological picture of the adrenal glands of noise treated (A) and control (B) males. The arrow marks the border 
between the cortex and medulla. Hematoxylin and eosin staining, original magnification ×100.

Figure 2. Histological picture of the spleen of noise treated (A) and control (B) males. Hematoxylin and eosin staining, 
original magnification ×100.
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the hippocampus via beta estrogen receptors. In a study by 
Hu et al. [49] stress increased glucocorticoid-dependent 
NO production in the hippocampus of males but not 
females. Moreover, estrogen itself has antioxidant effects 
[50], which also indicates that stress-induced brain lipid 
peroxidation may show sex differences.

In this study we used whole brain homogenates, 
because according to Baek et al. [51], the sensitivity of 
different brain areas to oxidative stress is different, so the 
sampling location would greatly influence the results. 
Therefore, it is common practice to homogenize the entire 
brain tissue in one homogenate [2, 6, 7].

Table 3. Time spent in the different parts of the open-field during the three tests (seconds, mean ± SD).

Basic behaviour Corner Edge Middle

Control female 105.31 ± 12.67 58.71 ± 10.16 15.98 ± 7.72
Control male 104.26 ± 25.09 63.09 ± 19.48 12.65 ± 6.57
Noise female 100.20 ± 11.91 67.97 ± 12.25 11.84 ± 3.59
Noise male 94.08 ± 22.97 69.12 ± 18.16 16.80 ± 9.02
Week 1
Control female 116.74 ± 29.65 57.66 ± 26.46 5.60 ± 4.10
Control male 98.07 ± 27.30 72.05 ± 23.26 9.87 ± 6.05
Noise female 100.64 ± 13.63 70.88 ± 9.42 8.48 ± 6.72
Noise male 107.37 ± 34.53 63.44 ± 27.57 9.19 ± 11.15
Week 2
Control female 114.25 ± 27.90 61.04 ± 27.75 4.71 ± 4.11
Control male 91.59 ± 16.53 82.79 ± 18.34 5.62 ± 2.55
Noise female 116.29 ± 13.84 56.93 ± 12.57 6.79 ± 4.69
Noise male 88.47 ± 26.43 75.16 ± 22.50 16.37 ± 8.70

Figure 3. Effect of noise on lipid peroxidation in the brain. DPPH: H-donor 
activity (Abs 517 nm), Ind. Chemilum.: induced chemiluminescence 
intensity (RLU), Malonaldehyde: level of lipid peroxidation (Abs 535 nm). 
CF = control female, CM = control male, NF = noise treated female, NM = noise treated 
male.
Statistics: one-way ANOVA and posthoc Tukey HSD test. Different letter markings 
indicate significant differences (p ≤ 0.05).

DPPH Ind. Chemilum. Malonaldehyde
CF 0.15 ± 0.04 a 25774657 ± 2956030 b 0.18 ± 0.03 b
CM 0.17 ± 0.03 ab 20729282 ± 1910157 ab 0.16 ± 0.04 ab
NF 0.20 ± 0.01 b 19477381 ± 3143630 a 0.11 ± 0.03 a
NM 0.17 ± 0.04 ab 21445720 ± 5430886 ab 0.16 ± 0.03 ab
Post-
hoc

Df = 3,19
F = 3.304
P < 0.05

CF vs. NF
P < 0.05

Df = 3,20
F = 3.47
P < 0.05

CF vs. NF
P < 0.05

Df = 3,20
F = 5.075
P < 0.01

CF vs. NF
p = 0.01

Figure 3 - Effect of noise on lipid peroxidation in the brain. DPPH:H-donor activity 

(Abs 517 nm), Ind. Chemilum.: induced chemiluminescence intensity (RLU), 

Malonaldehyde: level of lipid peroxidation (Abs 535 nm)

CF = control female, CM = control male, NF = noise treated female, NM = noise 

treated male

Statistics: one-way ANOVA and post hoc Tukey HSD test. Different letter markings 

indicate significant differences (p ≤ 0.05).
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Table 4. Effect of treatment on the incidence of the different behavioural elements (seconds, mean ± SD).

Basic behaviour Listening Grooming Sniffing Moving Sitting Rearing

Control female 29.82 ± 9.09 7.60 ± 3.32 19.15 ± 9.78 99.21 ± 15.73 24.26 ± 12.74 56.53 ± 17.58
Control male 19.15 ± 15.10 12.78 ± 6.90 14.16 ± 3.77 91.48 ± 17.04 20.70 ± 12.85 67.82 ± 19.89
Noise female 20.81 ± 15.03 4.14 ± 3.04 13.06 ± 7.96 93.82 ± 15.10 12.19 ± 8.72 73.98 ± 12.29
Noise male 23.94 ± 13.13 9.73 ± 7.90 11.13 ± 2.48 100.21 ± 7.52 17.64 ± 13.56 62.15 ± 16.56
Week 1
Control female 24.51 ± 6.54 13.91 ± 11.61 14.16 ± 8.79 84.99 ± 17.64 42.87 ± 19.94 52.14 ± 16.64
Control male 15.08 ± 0.11 14.13 ± 16.26 24.18 ± 11.74 86.98 ± 20.51 25.87 ± 20.95 67.15 ± 25.56
Noise female 12.47 ± 4.99 7.43 ± 4.06 16.70 ± 13.39 90.62 ± 20.42 27.73 ± 19.17 61.64 ± 14.49
Noise male 25.97 ± 13.93 12.71 ± 6.82 12.03 ± 4.79 97.29 ± 20.88 31.48 ± 17.78 51.23 ± 17.17
Week 2
Control female 25.32 ± 17.74 7.56 ± 5.29 12.77 ± 7.91 90.26 ± 39.87 35.58 ± 36.86 54.16 ± 20.97
Control male 15.71 ± 4.66 6.70 ± 3.94 28.98 ± 12.76 102.36 ± 6.23 17.15 ± 10.70 60.49 ± 11.89
Noise female 27.38 ± 19.84 10.04 ± 5.32 25.10 ± 12.11 109.08 ± 25.33 28.72 ± 20.08 42.20 ± 19.23
Noise male 26.44 ± 14.60 8.33 ± 4.77 20.18 ± 9.76 106.32 ± 12.20 25.43 ± 21.72 48.25 ± 18.74

When examining the brain tissue, we found that more 
free radicals were formed in the brains of female control 
mice than in control males, indicated by lower H-donor 
activity and increased chemiluminescence intensity and 
malonaldehyde concentration (Figure 3). This supports 
the hypothesis that females are generally more sensitive 
to acute stress effects and that the baseline glucocorticoid 
levels in females are initially higher than in males [52]. It is 
also a fact that females have more corticosteroid-binding 
globulin (CBG) in the plasma, which to some extent 
may compensate the higher glucocorticoid levels [53]. In 
addition, the amount of CBG is regulated by estrogen [54]. 
In female rats, ACTH levels are more elevated following 
stress than in males [55], and consequently, the increase 
in corticosterone levels following stress is also more 
pronounced in this sex [56]. 

No difference in the degree of lipid peroxidation in 
the brain was found in the control and noise-trained male 
mice. However, there was a significantly lower degree of 
lipid peroxidation in the brains of noise-treated females 
than in the brains of control females. The values of noise-
treated females were lower than those of noise-treated or 
control males, although the difference was not significant. 
This means that the habituation to quieter but persistent 
noise reduced the negative effect in females, to the extent 
that it reversed the original trend of females having a 
higher concentration of these products in the brain than 
males. 

It is well-known that males and females (including 
humans) adapt differently to environmental challenges; 
therefore, the response to stress may be different. These 
differences can be attributed to different gene expression 

patterns, which can be observed in the hippocampus, 
prefrontal cortex and nucleus accumbens [57, 47]. While 
the hippocampus-dependent memory of female rats 
improves under chronic stress, that of males deteriorates 
[58]. But females show enhanced cognitive performance 
only following mild stressors [59]. Conversely, in male rats, 
combined movement restriction and pain (intermittent 
tail shock) improved performance in the classical blink 
conditioning test but worsened in females. At the same 
time, this effect was not observed in neutered females 
and could be due to the presence of estrogen [60, 61]. 
Doremus-Fitzwater et al. [62] found that plasma cortisol 
levels in females returned to baseline by the end of 5 days of 
immobilization stress, but not in males. In contrast, chronic 
immobilization stress (22 days) significantly increased 
cortisol levels in female rats, but this was not observed 
in males [24]. Meanwhile, one week of immobilization in 
early adulthood attenuated HPA axis reactivity in male 
rats but not in females. Thus, early adulthood stress causes 
a decrease in HPA axis activity in males [63], whereas it 
causes an increase in HPA axis activity in females [24]. 
Overall, the sensitivity of females to stress is higher [64] 
but compensatory mechanisms are also stronger, which 
explains our results in the present study. 

Additionally, females exposed to early stress later 
show anhedonia (decreased sugar preference), increased 
immobility time in tests measuring learned helplessness 
and increased food intake in new environments compared 
to males. However, locomotor activity and exploration 
skills did not differ between the two sexes, suggesting 
that there was no difference in anxiety between males 
and females [19]. A similar result was obtained by Hodes 
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et al. [20], where females showed depressive symptoms 
in response to subchronic stress and even differences in 
brain transcription, but the locomotor activity and anxiety 
measured in the elevated maze showed no difference 
between either sexes or treatment groups. In our own study 
we also found no differences between groups in locomotor 
activity and behaviour as measured by the open-field test. 
In case of substantial stress, there is an increase in the 
suprarenal gland activity and a lymphocyte depletion in 
the lympoid tissues like spleen [65]. The intact histological 
pictures show that the stress level in this experiment was 
low.
3.3. Conclusion 
The significant role of the sex in stress tolerance, in the 
development of stress disorders and in the coping strategies 
can be seen. When stress-induced changes are not detected 
by behavioural, pathological or histopathological tests, 
changes in brain lipid peroxidation processes are already 
evident, with significant sex differences. The stress coping 
strategies of the two sexes show significant differences in 

both severity and the time line of symptoms, but also in 
compensatory mechanisms. Given this phenomenon, it is 
particularly worrying that researchers have used mainly 
male animals in a large proportion of psychological studies. 
In the future it is important to ensure that translation is 
equally efficient in females and males, and to extend the 
studies to females, including the influence of the cycle, 
since hormonal changes greatly affect stress mechanisms 
as well. 
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