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1. Introduction
Diabetes is a metabolic disease that occurs when 
insulin is not secreted in sufficient amounts or exhibits 
functionality issues if it is. The incidence of diabetes, 
which is characterized by hyperglycemia as a result of 
increased blood sugar levels, is constantly increasing [1,2]. 
Hyperglycemia’s long duration causes serious problems in 
various systems [2]. It was reported that diabetes disrupts 
reproductive function in men as a result of changes in 
spermatogenesis, steroidogenesis, sperm quality, and the 
normal histological structure of the testicles. In addition, 
various studies have indicated that body and testicular 
weight and antioxidant enzyme levels decreased in diabetic 
rats [3–5]. Testicular oxidative stress, inflammation, and 
germ cell apoptosis lead to decreasing fertility rates [6].

Ghrelin is a peptide hormone produced in the stomach 
and released in the circulation [7]. Ghrelin’s synthesis 
by the reproductive organs signifies its autocrine and/
or paracrine actions on the gonads [8]. Its functional 

receptor, Growth Hormone Secretagogue Receptor 1a, is 
also expressed at different hypothalamic–pituitary gonadal 
axis levels. Ghrelin sometimes regulates different aspects 
of the female and male reproductive functions, from germ 
cell production to embryo development. Through its 
various biological functions, such as energy metabolism 
by promoting fat deposition and food intake, ghrelin can 
be a key indicator of energy status and fertility (nutrient–
gene expression) [7]. It plays a significant role in regulating 
key testicular functions, such as testosterone secretion, 
Leydig cell proliferation, and the gene expressions of 
prime functional proteins in the seminiferous tubule [8]. It 
is thought that ghrelin localized in Leydig and Sertoli cells 
also plays a role in controlling spermatogenesis [9,10].

Taking low doses of streptozotocin (STZ) and having 
a high-fat diet are ideal ways to evaluate antidiabetic 
agents in type 2 diabetes [11,12]. Metformin, with its 
antiinflammatory and antioxidant properties, is widely 
used in treating type 2 diabetes [13–15]. It was reported 
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that metformin is preferred in treating type 2 diabetes 
because it inhibits gluconeogenesis in the liver [16]. It also 
inhibits insulin resistance by increasing insulin-mediated 
glucose uptake in the skeletal muscles [17,18]. Metformin 
can directly modify testicular and ovarian function 
through activated protein kinase complex-dependent and 
independent mechanisms. Its effects include improved sperm 
function and fertilization rates, enhanced oocyte quality and 
embryo development, and reduced miscarriage rates [19]. 
Metformin treatment improves testicular steroidogenesis and 
spermatogenesis and reduces testicular oxidative damage in 
experimental diabetic conditions [20,21].

Testicular dysfunction, a severe secondary complication 
of diabetes, negatively affects reproductive health. Many 
studies exist on the harmful effects of diabetes on reproductive 
health. However, unfortunately, there is still no complete 
prescription for its treatment. This study aimed to investigate 
the impact of ghrelin and metformin on sperm parameters, 
testosterone hormones, and caspase 3 and iNOS expression 
in experimental diabetic rats given a high-fat diet and STZ.

2. Materials and methods
2.1. Chemicals
Ghrelin (RP10781-1) was obtained from Genscript, STZ 
(SO130) from Sigma-Aldrich, and metformin from a local 
pharmacy. 
2.2. Experimental groups and induction of diabetes
The study was performed on 38 male Wistar albino rats. The 
rats were randomly numbered and placed into 4 groups. 
The rats were obtained from Van Yüzüncü Yıl University’s 
Experimental Research Center and housed in appropriate 
laboratory conditions. The animals were given clean drinking 
water and fed pellet feed. After obtaining the necessary 
permission from the relevant institution (decision dated 
27.04.2023 and numbered 2023/06-05), the experimental 
phase started.

The rats in the control group were fed standard rat food 
for the first 21 days. All rats except those in the control group 
had a high-fat diet (60 kcal, % fat) throughout the experiment. 
Rats made diabetic by STZ administration were put on a 
high-fat diet (60 kcal, % fat) for the first 3 weeks before the 
STZ injection on day 22 of the experiment [22]. On the 22nd 
day, the blood sugars of all rats were measured, and it was 
determined that they did not have diabetes. The rats in the 
control group were then injected with citrate buffer (pH = 4.5, 
0.1 mol/L). The remaining rats were injected intraperitoneally 
(IP) with STZ (40 mg/kg) dissolved in citrate buffer (ph = 4.5, 
0.1 mol/L). Diabetes was confirmed in the rats in the 2nd, 
3rd, and 4th groups by measuring their blood glucose levels 
10 days after STZ injection. For the control group (n = 8), 
only citrate buffer (1 mL/kg) was administered to the animals. 
Citrate buffer administration was done on the 22nd day [22]. 
For the diabetes group (n = 10), STZ dissolved in citrate 
buffer (40 mg/kg) was given IP [22]. STZ administration was 
initiated on the 22nd day.

The diabetes + ghrelin group (n = 10) was given 
STZ (40 mg/kg) and ghrelin (100 μg/kg) IP [23]. STZ 

administration was performed on the 22nd day. From the 
32nd day of the study, ghrelin (100 μg/kg) was administered 
once a day for 21 days, dissolved in physiological saline, 
and administered IP. The diabetes + metformin group 
(n = 10) was given STZ (40 mg/kg) and metformin (100 
mg/kg). STZ administration was performed on the 22nd 
day. From the 32nd day of the study, metformin (100 μg/
kg) was administered once a day for 21 days, dissolved in 
physiological saline, given by gavage [24].
2.3. Sample collection and spermatological examination
At the end of the study, intracardiac blood samples were 
taken while the rats were under general anesthesia (15 mg/
kg xylazine and 50 mg/kg ketamine). The testicles were 
removed immediately afterward. Euthanasia was achieved 
after blood samples and testicular tissues were collected. 
These blood samples were centrifuged at 3500 g × for 10 
min. Later, a small incision was made in the scrotum, and 
the testicles were removed. One testes from each rat was 
left in fixation solution to be evaluated histopathologically, 
immunohistochemically, and with immunofluorescence. 
Care was taken not to cool the other testicle, which was 
taken for spermatological evaluation. First, motility was 
determined (at 37 °C) without allowing the cauda part 
of that testicle to cool. The same cauda part was divided 
into tiny pieces in physiological saline with the help of a 
sharp scalpel and a suspended mixture. This mixture was 
used for concentration and morphological evaluation after 
incubation for 10 min [25].

Sperm concentration was determined using an 
Eppendorf tube instead of a routine hemocytometer—a 
slight modification of the method used by Aksu et al. 
[26]. In short, 10 µL of the mixture obtained by slicing the 
cauda epididymis in physiological saline was taken with 
an automatic pipette and placed in an Eppendorf tube 
containing 990 µL of Hayem solution. After the tube was 
vortexed for 15 s, approximately 20 µL of diluted sperm 
suspension was transferred to the counting chambers of 
the Thoma slide (HHH, Germany), and 5 min was allowed 
for all sperm to settle. Counting was done under a light 
microscope at a magnification of 400.

The mixture obtained by slicing the cauda epididymis 
in physiological saline was used to determine the ratio of 
abnormal spermatozoa. Exactly 5 µL of this mixture was 
taken with an automatic pipette and placed on a clean slide. 
Equal amounts of eosin-nigrosine dye (1.67% eosin, 10% 
nigrosine, and 0.1 M sodium citrate) were placed on the 
same slide and mixed. Immediately after mixing, a smear 
was made on the slide with the help of a coverslip and 
dried immediately. The slides were then evaluated under 
the light microscope at a magnification of 400. Precisely 
200 sperm cells were evaluated in each slide and expressed 
as a percentage [27].
2.4. Testosterone measurement
The chemiluminescence microparticle immunological 
method was used for serum testosterone measurement. 
This measurement was made with an Abbott Architect 
i4000 SR device. The measurement was performed using 
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the appropriate kit (G6-1080/R01 B2P1WT, Archytect 
System, Germany; calibration range: 0.00–30.00 ngmol/L; 
quantitation range: 0.15–64.57 nmol/L; sensitivity: 99%) 
for the device.
2.5. Histopathological examination
A buffered formaldehyde solution (10%) was used for the 
fixation of the testicular tissues obtained in the study. The 
fixed tissues were subjected to routine procedures (alco-
hol and xylene series, followed by placement in paraffin 
blocks). Sections obtained from the paraffin blocks were 
stained with hematoxylin and eosin and evaluated accord-
ing to the absence or severity of lesions using a light mi-
croscope.
2.6. Immunohistochemical examination
Tissue sections placed on adhesive (poly-L-Lysin) slides 
for immunoperoxidase examination were deparaffinized 
and dehydrated, and caspase 3 (cat no. ab184787; dilution 
ratio: 1/100, US) was used as the primary antibody and 
dripped onto the sections. The sections were incubated 
with a biotinized secondary antibody for 10–30 min at 
room temperature (ab236466). They were then incubated, 
taking into account the instructions for use, and 3-3’ 
Diaminobenzidine was used as a chromogen. Light 
microscopy (Zeiss Axio, Germany) was used to evaluate 
the stained sections [25]. 
2.7. Immunofluorescence examination
Tissue sections were placed on adhesive (poly-L-
Lysin) slides for immunofluorescence examination. 
Deparaffinizing and dehydration processes were then 
performed, and iNOS (cat no: ab283668; dilution ratio: 
1/100, UK) was used as the primary antibody and dropped 
onto the sections. Subsequently, FITC (cat no. ab6785; 
dilution ratio: 1/1000) was used as a secondary antibody, 
and the sections were left in the dark for 45 min. In the 
next step, DAPI (cat no. D1306; dilution ratio: 1/200, UK) 
was added, and the sections were left in the dark for 5 min. 
Finally, the readied sections were closed with a coverslip 
and examined. Examination was performed under a 
fluorescent microscope (Zeiss Axio, Germany) [28].
2.8. Statistical analysis
The Shapiro–Wilk test was used to determine whether 
the testosterone and spermatological data were normally 
distributed. Since the testosterone and spermatological 
data in the groups were normally distributed, a One-
Way ANAVO test was used to determine the significant 
differences between the groups for the same parameter. 
The post-hoc (Tukey HSD) test following ANOVA was 
used to determine which group caused the differences. 
The Kruskal–Wallis test (nonparametric) was used 
to determine the differences between groups for 
immunohistochemical and immunohistopathological 
evaluations. The Bonferroni-adjusted Mann–Whitney 
U test was used to determine which group caused the 
differences. In determining the positive staining intensity, 
5 randomly selected areas in each image (images obtained 
from immunohistochemical and immunofluorescent 

staining) were evaluated with the Zeiss Zen Imaging 
Software program. Immunohistochemical and 
immunohistopathological findings were converted 
into semiquantitative data. Following Kruskal–Wallis 
analysis, a Bonferroni-adjusted Mann–Whitney U test 
was performed to determine which group caused the 
differences. The SPSS 21.0 program was used to statistically 
analyze the histopathological and biochemical evaluations. 
In the evaluations, p < 0.05 was considered significant [29].

3. Results
3.1. Sperm parameters
When the sperm parameter findings were examined, 
spermatozoa concentration and motility were significantly 
lower in the diabetes group than in the other groups, and 
the number of abnormal sperm was significantly higher (p 
< 0.001). It was determined that, while the spermatozoa 
concentration and motility significantly increased in the 
groups treated with metformin or ghrelin in addition 
to STZ, the rate of abnormal sperm also decreased (p < 
0.001). Improvements in sperm parameters were more 
pronounced in the diabetes + ghrelin group than in the 
diabetes + metformin group (p < 0.001). The statistical 
data for findings obtained in the evaluation of sperm 
parameters are summarized in Table 1.
3.2. Testosterone findings
When serum testosterone values were examined, these 
values in the diabetes group were dramatically lower than 
in the control group (p < 0.001). Furthermore, although 
serum testosterone values in the groups given metformin 
and ghrelin with STZ were lower than in the control group, 
they were significantly restored and increased compared 
to the testosterone values of the diabetes group (p < 0.001). 
Additionally, testosterone levels in the diabetes + ghrelin 
group were higher than those in the diabetes + metformin 
group (p < 0.001). The statistical data for the evaluation of 
the testosterone hormone are summarized in Table 2.
3.3. Histopathological findings
A normal histological structure was detected in the 
testicular tissues of the control group rats (Figure 1). 
However, for rats in the diabetes group, severe degenerative 
changes in spermatocytes on the tubular walls of the 
testicular tissues, necrotic changes, and thinning of the 
tubular wall were observed. The hyperemia detected in 
the interstitial areas was also severe (Figure 1). In diabetic 
rats treated with ghrelin, degeneration of spermatocytes 
in the wall of the tubules and thinning of the tubular wall 
were mild, and hyperemia was moderate (Figure 1). The 
findings in the diabetes group treated with metformin 
were similar to those in the diabetes + ghrelin group. Only 
interstitial hyperemia was mild (Figure 1). A statistically 
significant difference (p ˂ 0.05) was found between the 
diabetic group treated with ghrelin and the diabetic group 
treated with metformin when compared with the diabetic 
group. The findings obtained from the histopathological 
evaluation are graphically presented in Figures 2a–2d.
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3.4. Immunohistochemical findings
For the immunohistochemical evaluation of the groups, 
while caspase 3 expression was negative in the control 
group, it was detected intensely in spermatocytes in the 
diabetes group (Figure 3). Caspase 3 expression was mildly 

detected in the ghrelin-administered diabetic group and 
the metformin-administered diabetic group (Figure 3). 
When comparing the diabetes + ghrelin and the diabetes + 
metformin groups with the diabetes group, the difference 
was significant (p ˂ 0.05).

Table 1. Sperm parameter findings.

Groups
Spermatozoa concentration
(×106)
(mean ± SEM)

Motility
(%)
(mean ± SEM)

Abnormal spermatozoa rate 
(%)
(mean ± SEM)

Control 116.42 ± 1.27a 73.00 ± 1.82a 12.71 ± 0.95d

Diabetes 32.71 ± 0.95d 31.71 ± 10.32d 53.28 ± 1.11a

Diabetes + ghrelin 66.14 ± 1.06b 58.71 ± 1.70b 28.14 ± 0.69c

Diabetes + metformin 46.42 ± 1.39c 48.71 ± 1.38c 35.85 ± 1.21b

p-value p ≤ 0.001 p ≤ 0.001 p ≤ 0.001

a,b,c,d p: Different letters in the same column represent a statistically significant difference (p < 0.001); p-values were obtained according 
to Tukey’s HSD test.

Table 2. Serum testosterone results.

Groups Testosterone (nmol/L) (mean ± SEM)

Control 6.84 ± 0.31a

Diabetes 2.57 ± 0.21d

Diabetes + ghrelin 3.49 ± 0.21b

Diabetes + metformin 3.14 ± 0.25c

p-value p ≤ 0.001 

a,b,c,d p: Different letters in the same column represent a statistically significant difference (p < 0.001); p-values were obtained according 
to Tukey’s HSD test.

Figure 1. Testicular tissue; degeneration in spermatocytes (arrowheads); necrosis (arrows); 
thinning of the tubular wall; hyperemia in vessels; H&E; Bar: 40 µm.
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Figure 3. Testicular tissue; expression of cytoplasmic caspase 3 in spermatocytes 
(arrowheads); IHC-P; Bar: 40 µm.
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Figure 2a. Histopathologic findings. 
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Figure 2c. Histopathologic findings.
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Figure 2d. Histopathologic findings. 
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3.5. Immunofluorescence findings
As a result of the immunofluorescence evaluation in the 
testicular tissues of the groups, while iNOS expression was 
negative in the control group, it was intense in the diabetes 
group (Figure 4). iNOS expression in the intertubular 
spaces was mild in the diabetes + ghrelin and diabetes + 
metformin groups (Figure 4), and there was a significant 
difference (p ˂ 0.05) in iNOS expression between these 
2 groups and the diabetes group. The statistical data 
for immunohistochemical and immunofluorescence 
evaluation of testicular tissues are summarized in Table 3.

4. Discussion
Diabetes has undesirable effects on multiple organ 
functions and negatively affects reproduction. Therefore, 
several strategies have been developed to treat diabetes and 
prevent or delay diabetes-related complications. However, 
an effective treatment method still does not exist. It is of 
critical importance to protect and guarantee reproductive 
health in the treatment protocols applied.

Evaluation of sperm parameters is paramount in the 
clinical examination of male fertility. In the current study, 
abnormal deviations occurred in the sperm parameters 

Figure 4. Testicular tissue; iNOS expression in intertubular spaces (arrowheads); IF; Bar: 50 µm.
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of the diabetes group, which supports previous findings 
in the literature. While there were significant decreases 
in spermatozoa concentration and motility, there 
were significant increases in abnormal spermatozoa 
concentration [25,30,31]. The low spermatozoa 
concentration of the diabetic group may have been 
caused by decreased testosterone levels. Furthermore, the 
low testicular glucose utilization of the Sertoli cells may 
also have been responsible because Sertoli cells play an 
important role as an energy source in sperm development 
[32]. Metformin and ghrelin administered to the diabetic 
group brought the sperm parameters to the levels of the 
control group. These findings are consistent with previous 
studies on the effects of metformin and ghrelin on sperm 
parameters [3,30,33]. The improvement in parameters 
may have been mediated by the antioxidant properties 
of ghrelin and its control of insulin and glucose levels 
[3]. Additionally, the lowering of the glucose level by 
metformin may have been effective in this improvement 
[21].

Most testosterone is produced in the testicles. In this 
study, the testosterone level in the diabetes group was 
found to be low, similar to previous diabetes studies 
[3,25]. It was shown that the hypothalamic-pituitary-
testicular axis is negatively affected by diabetes, which may 
be the reason for the decrease in testosterone levels in the 
diabetes group [3]. However, exogenously administered 
ghrelin significantly restored testosterone levels. This 
result is consistent with previous studies [3,34]. However, 
it differs from another study [35]. This difference may 
be because ghrelin’s effect on testosterone levels depends 
on nutritional status [36]. Metformin administered in 
the present study also produced significant increases in 
testosterone levels. However, serum testosterone levels 
were higher in the diabetes + ghrelin group than in the 
diabetes + metformin group. Nna et al. [6] reported that 
the increase in the number of Leydig cells affected the 
increase in the testosterone level caused by metformin.

The abnormal changes (degenerative and necrotic 
changes, interstitial edema) detected in the testicular 
structure of the diabetes group in the present study 
are consistent with another study [3]. However, in the 
current study, ghrelin and metformin administered to 

diabetic groups reduced the severity of testicular structure 
deterioration. The effects of ghrelin and metformin on 
testicular histoarchitecture have been reported in previous 
studies and are in line with this study’s findings [3,37].

It has been reported that diabetes mellitus forces 
spermatocytes to apoptosis by increasing oxidative stress 
in testicular tissues. Caspase 3 (also known as executioner 
caspase), the final apoptosis pathway, was preferred in 
this study since it is irreversible. It has been reported in 
the literature that diabetes increases oxidative stress in 
cells with a hyperglycemic effect, and, accordingly, cells 
are dragged into apoptosis [38,39]. In this study, caspase 
3 expression, which was evaluated this way, was observed 
to be severe in the diabetes group. The result obtained is 
consistent with the literature [31,40,41]. A literature review 
shows that metformin prevents tissue apoptosis by down-
regulating the caspase 3 level [6]. The reported findings are 
consistent with those from our study. The current research 
shows that ghrelin is as effective as metformin on caspase 
3. The results obtained about ghrelin are also compatible 
with the literature [42] because, besides its metabolic 
impact, it inhibits apoptosis by producing antiapoptotic 
effects on various cell types [43].

In this study, iNOS expression was severe in the 
testicular tissues of the diabetes group. In previously 
reported studies, iNOS expression was high in the diabetes 
group [6,31,40]. However, ghrelin administered to the 
diabetes group decreased the expression level of iNOS 
in this study, which is consistent with the literature [43]. 
Additionally, metformin administration had an effect 
on lowering the iNOS expression level. In this sense, the 
results obtained here support the results of previously 
reported studies [6,41].

Our findings determined that ghrelin and metformin 
had positive effects, including improved sperm quality 
parameters in diabetes induced by STZ and a high-fat diet 
and increased testosterone levels. Ghrelin administered to 
the diabetic group increased testosterone levels more than 
metformin. Additionally, ghrelin and metformin reduced 
caspase 3 and iNOS expression levels in the diabetic rats. 
Based on these results, ghrelin and metformin should 
be considered part of therapeutic treatments to protect 
reproductive health in diabetic patients.

Table 3. Statistical data of immunohistochemical and immunofluorescent findings in the testicular tissue.

Groups caspase 3 expression  (mean ± SEM) iNOS expression (mean ± SEM)
Control 19.3 ± 1.52a 20.42 ± 2.07a

Diabetes 81.47 ± 3.85b 79.51 ± 4.08b

Diabetes + gherelin 40.57 ± 1.91c 40.44 ± 2.87c

Diabetes + metformin 41.08 ± 3.16c 40.37 ± 2.53c

p-value p ≤ 0.05 p ≤ 0.005

a,b,c p: Different letters in the same column represent statistically significant differences (p < 0.05); p-values were obtained according to 
the adjusted Mann–Whitney U test.
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