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Abstract: In animal breeding, when there is a relationship between the dependent (Y) and independent (X) variables, regression
analysis is applied. But when one of the variables has one or more missing observations regression analysis cannot be applied. This
paper illustrates and discusses a regression analysis in which the independent variable (X) has a missing observation. 
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Hayvancılıkta Bağımsız Değişkenler Arasında Kayıp Gözlemli Doğrusal
Regresyon Analizi

Özet: Hayvancılıkta bağımsız (X) değişken ile bağımlı (Y) değişkenler arası ilişki regresyon analizi ile ifade edilir. Fakat bu
değişkenlerden birisi bir veya daha fazla kayıp gözleme sahip ise regresyon analizi yapılamaz. Bu makalede X değişkeninde (bağımsız
değişken) kayıp gözlem olduğunda regresyon analizinin uygulanışı tanıtılmış ve tartışılmıştır.

Anahtar Sözcükler: Regresyon Analizi, En Küçük Kareler Tahmini, Kayıp Gözlemler.

Introduction

A pair of random variables such as (height and
weight) follows some sort of bivariate probability
distribution. When we are concerned with the
dependence of a random variable Y on a quantity X which
is not a random variable, an equation that relates Y to X
is usually called a regression equation (1).

Regression analysis has been loosely described as a
study of the relationship between one variable, the
response variable, and one or more other variables, the
predictor variables. The parameters of regression (b

0
, b

1
)

were estimated by the least square technique (2).

Dear (2), has illustrated a method for multiple
regression models with missing data.

Method

It was assumed that we had a sample of size N from
a (p + 1) multivariate distribution as:
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The maximum likelihood solution for the b’s in the
classical regression situtation, where the X’s are

considered to be fixed with no missing observations may
be stated as follows:

x
ij

: value of X
j
for the ith individual

Now let us introduce missing observations among the
fixed independent variables for certain individuals.

We define a random indicator function W
ij
, such as

βj = σjk
-1∑

k=1

p
 σk0  j ≠ k

β0 = Y – βj Xj

σk0 = Σ Xij – Xj  Yi – Y  / N – 1

σjk = Σ Xij – Xj  Xik – Xk  / N – 1

σjk
-1 = 1 / σjk j, k ≠ 0

Xj = Σ Xij / N, Y = Σ Yi / N

^

^

^

^

^ ^

^ ^
(1)

(2)



Linear Regression Analysis With Missing Observations Among The Independent Variables in Animal Breeding

Table 1. Regression Analysis With No Missing Observations.

Source of Var. Degree of Freedom (D.F.) Sum of Squares (S.S).

Regression p Σ Sxiy βi [2]

Residual n – p – 1 [1] – [2]

Total n – 1 Syy [1]

p : The number of independent variables.

n : The number of observations.

Table 2. Regression Analysis With Missing Observations.

Source of Var. D.F. S.S.

Regression p Wij Σ Sxjy βj [2]

Residual n – 1 – k – p [1] – [2]

Total n – 1 – k Syy [1]

k : The number of missing observations.

Example

The food consumption of six chickens (Y) (kg/350
day) and body weight (X) (kg) are given in Table 3.

Table 3. The Food Consumption Six Chickens (Y) (kg/350 day) Body

Weight (X) (kg) (4).

X 2.08 2.31 2.17 1.99 2.67 2.13

Y 39.45 42.17 40.68 41.40 45.07 41.72

Regression parameters (β
0

and β
1
) were estimated

from the data in table 3.

Case 1: With no missing observations.

Regression parameters (β
0

and β
1
) were estimated as

described in equation 1 and Table 1.

^β
0

= 26.661

^β
1

= 6.781

Table 4. Regression Analysis With No Missing Observations.

S.V. D.F. S.S. M.S. F

Regression 1 13.498 13.498 12.674

Residual 4 4.259 1.065

Total 5 17.757

* : p < 0.05

Case 2: With missing observations.

We assumed that X’s fourth observation value in Table
3 (1.99) was missing. Then we estimated the regression
parameters.

X 2.08 2.31 2.17 * 2.67 2.13

Y 39.45 42.17 40.68 41.40 45.07 41.72

Wij 1 1 1 0 1 1

* : Missing observation.

W
ij

= 1 if X
ij

is observed.

W
ij

= 0 if X
ij

is not observed.

Randomness of the missing observations means that
the joint distribution of any set of W’s is given as the
product of the probabilities of the individual indicator
functions.

N
j
= Σ W

ij

(The number of individuals for which X
j
is observed).

N
jk

= Σ W
ij

W
ik

(The number of individuals for which both X
j
and X

k
and observed).

(The mean of X
j
‘s based on observed values of X

j
’s for

individuals for which both X
j
and X

k
are observed).

(The mean of Y’s for individuals for which X
j

is
observed).

By analogy, it would appear reasonable to apply
estimates similar to (1) by using all available data.

Our estimates may now be written:

β
j
= Σ (σ

jk
)-1 σ

k0
(j ≠ 0)

N
1

= Σ W
i1

= 5
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Xj (j) = Σ W ij Xij / Nj

Y(j) = Σ W ij Yi / Nj

β0 = Y – Σ βj Xj (j)

σjk = Σ W ijW ik Xij–Xj (jk)  Xik–Xk (jk) / Njk – 1  j, k ≠ 0

X1(1)=Σ W i1Xi1/N1= (1)(2.08) +...+ (1)(2.13) /5=2.272

σj0 = Σ W ij Xij–Xj (j)  Yi–Y(j)  / Nj – 1  

^

^

^ ^ ^

^
(3)
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Table 5. Regression Analysis With Missing Observations.

S.V. D.F. S.S. M.S. F

Regression 1 15.755 15.755 23.621*

Residual 3 2.000 0.667

Total 4 17.757

* : p < 0.05.

Discussion and Results

These estimates are consistent estimates of the usual
unbiased estimates as can be seen from the following
considerations:

1) The X
ij
, X

ik
pairs of values are from a finite

population from which members are chosen
independently.

2) The σ
jk

(j, k ≠ 0) are, therefore, random variables
and are the usual unbiased estimates of the covariance for
a finite population.

3) The σ
jk

are obviously consistent estimates of σ
jk

since their variances approach 0.

4) The same reasoning can be applied to σ
k0

.

5) Similarly the X
j(j) 

are consistent estimates of X
j
.

6) The efficiency of this method depends upon the
correlation between the independent variables and the
rate of missing observations.

The results of this study are as follows:

1) Regression was significant (P < 0.05) as shown in
tables 4 and 5.

2) X’s 4th observation value was predicted to be
2.230.
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Y(1)=Σ W i1Yi/N1=(1)(39.45)+...+(1)(41.72)/5=41.818

σ11 = Σ W i1 W i1 Xi1 – X1(1)
2
 / N1 – 1

= (1) (1) (2.08 – 2.272 2 + ... + 

(1) (1) 2.13 – 2.72 2 / (5 – 1) = 0.05682

^

σ10 = Σ W i1 Xi1 – X1(1)  Yi – Y(1)  / N1 – 1

= [ (1) (2.08 – 2.272) (39.45 – 41.818) + ... + (1)

(2.13 – 2.272) (41.72 – 41.818) ] / 4 = 0.47308

^

β1 = Σ σ11
-1 σ10 = (1 / 0.05682) (0.47308) = 8.326

^ ^ ^

β0 = Y–β1 X1 (1) = 41.748 – (8.326)(2.272) = 22.831
^
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